Hopper discharge flow dynamics of milled pine and prediction of process upsets using the discrete element method

被引:16
作者
Chen, Feiyang [1 ]
Xia, Yidong [2 ]
Klinger, Jordan [2 ]
Chen, Qiushi [1 ]
机构
[1] Clemson Univ, Glenn Dept Civil Engn, S Palmetto Blvd, Clemson, SC 29634 USA
[2] Idaho Natl Lab, Energy & Environm Sci & Technol Directorate, 1955 N Fremont Ave, Idaho Falls, ID 83415 USA
关键词
Loblolly pine; Bulk solids; Material handling; Flowability; Process upsets; Discrete element method; PARTICLE-SHAPE; MECHANICAL-PROPERTIES; GRANULAR-MATERIALS; BIOMASS PARTICLES; ROLLING FRICTION; WOOD CHIPS; DEM; BEHAVIOR; SIMULATIONS; SEGREGATION;
D O I
10.1016/j.powtec.2022.118165
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Milled pine exhibits variabilities in flow properties due to complex particle characteristics, making it challenging to ensure continuous feeding and transport in biorefineries. This work presents discrete element method (DEM) simulations of wedge-shaped hopper discharge of milled pine based on an experiment-informed DEM contact model capable of capturing the non-linearly hysteretic strain-hardening behavior of milled pine. Parametric studies of hopper discharge over varying hopper processing parameters and pine material attributes are conducted. The mass flow rate and critical arching distance predicted by DEM agree reasonably with the experiment and finite element results in the literature. Two processing parameters (opening width and semi-inclination angle) and two material attributes (rolling friction and moisture-induced cohesion) are shown to critically influence the hopper discharge dynamics. Moreover, DEM results show that the hopper with a larger
引用
收藏
页数:19
相关论文
共 52 条
[1]   Assessment on bulk solids best practice techniques for flow characterization and storage/handling equipment design for biomass materials of different classes [J].
Barletta, Diego ;
Berry, Robert J. ;
Larsson, Sylvia H. ;
Lestander, Torbjorn A. ;
Poletto, Massimo ;
Ramirez-Gomez, Alvaro .
FUEL PROCESSING TECHNOLOGY, 2015, 138 :540-554
[2]   An Assessment on Silo Design Procedures for Granular Woody Biomass [J].
Barletta, Diego ;
Poletto, Massimo .
ICHEAP-11: 11TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-4, 2013, 32 :2209-2214
[3]   A set of hysteretic nonlinear contact models for DEM: Theory, formulation, and application for lignocellulosic biomass [J].
Chen, Feiyang ;
Xia, Yidong ;
Klinger, Jordan L. ;
Chen, Qiushi .
POWDER TECHNOLOGY, 2022, 399
[4]   Flow behavior characterization of biomass Feedstocks [J].
Cheng, Ziwei ;
Leal, Juan H. ;
Hartford, Carrie E. ;
Carson, John W. ;
Donohoe, Bryon S. ;
Craig, David A. ;
Xia, Yidong ;
Daniel, Richard C. ;
Ajayi, Oyelayo O. ;
Semelsberger, Troy A. .
POWDER TECHNOLOGY, 2021, 387 :156-180
[5]   DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge [J].
Cleary, PW ;
Sawley, ML .
APPLIED MATHEMATICAL MODELLING, 2002, 26 (02) :89-111
[6]   The effects of physical and chemical preprocessing on the flowability of corn stover [J].
Crawford, Nathan C. ;
Nagle, Nick ;
Sievers, David A. ;
Stickel, Jonathan J. .
BIOMASS & BIOENERGY, 2016, 85 :126-134
[7]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[8]   A sober view of the difficulties in scaling cellulosic biofuels [J].
Dale, Bruce .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2017, 11 (01) :5-7
[9]   ARCHING IN HOPPERS .2. ARCHING THEORIES AND CRITICAL OUTLET SIZE [J].
DRESCHER, A ;
WATERS, AJ ;
RHOADES, CA .
POWDER TECHNOLOGY, 1995, 84 (02) :177-183
[10]   Experimental investigation of wall pressure and arching behavior under surcharge pressure in mass-flow hoppers [J].
Guo, Jie ;
Roberts, Alan W. ;
Prigge, Jan-Dirk .
POWDER TECHNOLOGY, 2014, 258 :272-284