Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer

被引:50
作者
Hou, Min [1 ]
Zhou, Long [1 ]
Sun, Jihong [1 ]
机构
[1] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Radiol, Sch Med, 3 East Qingchun Rd, Hangzhou 310016, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rectal cancer; Radiomics; Super-resolution; Magnetic resonance imaging; Preoperative T-staging; ACCURACY;
D O I
10.1007/s00330-022-08952-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To investigate the feasibility and efficacy of a deep-learning (DL)-based three-dimensional (3D) super-resolution (SR) MRI radiomics model for preoperative T-staging prediction in rectal cancer (RC). Methods Seven hundred six eligible RC patients (T1/2 = 287, T3/4 = 419) were retrospectively enrolled in this study and chronologically allocated into a training cohort (n = 565) and a validation cohort (n = 141). We conducted a deep-transfer-learning network on high-resolution (HR) T2-weighted imaging (T2WI) to enhance the z-resolution of the images and acquired the preoperative SRT2WI. The radiomics models named model(HRT2) and model(SRT2) were respectively constructed with high-dimensional quantitative features extracted from manually segmented volume of interests of HRT2WI and SRT2WI through the Least Absolute Shrinkage and Selection Operator method. The performances of the models were evaluated by ROC, calibration, and decision curves. Results Model(SRT2) outperformed model(HRT2) (AUC 0.869, sensitivity 71.1%, specificity 93.1%, and accuracy 83.3% vs. AUC 0.810, sensitivity 89.5%, specificity 70.1%, and accuracy 77.3%) in distinguishing T1/2 and T3/4 RC with significant difference (p < 0.05). Both radiomics models achieved higher AUCs than the expert radiologists (0.685, 95% confidence interval 0.595-0.775, p < 0.05). The calibration curves confirmed high goodness of fit, and the decision curve analysis revealed the clinical value. Conclusions Model(SRT2) yielded superior predictive performance in preoperative RC T-staging by comparison with model(HRT2) and expert radiologists' visual assessments.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 40 条
[1]   Diagnostic Accuracy of MRI for Assessment of T Category, Lymph Node Metastases, and Circumferential Resection Margin Involvement in Patients with Rectal Cancer: A Systematic Review and Meta-analysis [J].
Al-Sukhni, Eisar ;
Milot, Laurent ;
Fruitman, Mark ;
Beyene, Joseph ;
Victor, J. Charles ;
Schmocker, Selina ;
Brown, Gina ;
McLeod, Robin ;
Kennedy, Erin .
ANNALS OF SURGICAL ONCOLOGY, 2012, 19 (07) :2212-2223
[2]  
Amin MB., 2017, AJCC CANC STAGING MA, V8th
[3]   Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting [J].
Beets-Tan, Regina G. H. ;
Lambregts, Doenja M. J. ;
Maas, Monique ;
Bipat, Shandra ;
Barbaro, Brunella ;
Curvo-Semedo, Luis ;
Fenlon, Helen M. ;
Gollub, Marc J. ;
Gourtsoyianni, Sofia ;
Halligan, Steve ;
Hoeffel, Christine ;
Kim, Seung Ho ;
Laghi, Andrea ;
Maier, Andrea ;
Rafaelsen, Soren R. ;
Stoker, Jaap ;
Taylor, Stuart A. ;
Torkzad, Michael R. ;
Blomqvist, Lennart .
EUROPEAN RADIOLOGY, 2018, 28 (04) :1465-1475
[4]   Rectal Cancer, Version 2.2018 Clinical Practice Guidelines in Oncology [J].
Benson, Al B., III ;
Venook, Alan P. ;
Al-Hawary, Mahmoud M. ;
Cederquist, Lynette ;
Chen, Yi-Jen ;
Ciombor, Kristen K. ;
Cohen, Stacey ;
Cooper, Harry S. ;
Deming, Dustin ;
Engstrom, Paul F. ;
Grem, Jean L. ;
Grothey, Axel ;
Hochster, Howard S. ;
Hoffe, Sarah ;
Hunt, Steven ;
Kamel, Ahmed ;
Kirilcuk, Natalie ;
Krishnamurthi, Smitha ;
Messersmith, Wells A. ;
Meyerhardt, Jeffrey ;
Mulcahy, Mary F. ;
Murphy, James D. ;
Nurkin, Steven ;
Saltz, Leonard ;
Sharma, Sunil ;
Shibata, David ;
Skibber, John M. ;
Sofocleous, Constantinos T. ;
Stoffel, Elena M. ;
Stotsky-Himelfarb, Eden ;
Willett, Christopher G. ;
Wuthrick, Evan ;
Gregory, Kristina M. ;
Gurski, Lisa ;
Freedman-Cass, Deborah A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (07) :874-901
[5]   Rectal cancer: Local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging - A meta-analysis [J].
Bipat, S ;
Glas, AS ;
Slors, FJM ;
Zwinderman, AH ;
Bossuyt, PMM ;
Stoker, J .
RADIOLOGY, 2004, 232 (03) :773-783
[6]   Radiomics Features at Multiparametric MRI Predict Disease-Free Survival in Patients With Locally Advanced Rectal Cancer [J].
Cui, Yanfen ;
Wang, Guanghui ;
Ren, Jialiang ;
Hou, Lina ;
Li, Dandan ;
Wen, Qianfa ;
Xi, Yanfeng ;
Yang, Xiaotang .
ACADEMIC RADIOLOGY, 2022, 29 (08) :E128-E138
[7]   Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features [J].
de Farias, Erick Costa ;
di Noia, Christian ;
Han, Changhee ;
Sala, Evis ;
Castelli, Mauro ;
Rundo, Leonardo .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]   Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer [J].
Fan, Ming ;
Liu, Zuhui ;
Xu, Maosheng ;
Wang, Shiwei ;
Zeng, Tieyong ;
Gao, Xin ;
Li, Lihua .
NMR IN BIOMEDICINE, 2020, 33 (08)
[9]   Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study [J].
Feng, Lili ;
Liu, Zhenyu ;
Li, Chaofeng ;
Li, Zhenhui ;
Lou, Xiaoying ;
Shao, Lizhi ;
Wang, Yunlong ;
Huang, Yan ;
Chen, Haiyang ;
Pang, Xiaolin ;
Liu, Shuai ;
He, Fang ;
Zheng, Jian ;
Meng, Xiaochun ;
Xie, Peiyi ;
Yang, Guanyu ;
Ding, Yi ;
Wei, Mingbiao ;
Yun, Jingping ;
Hung, Mien-Chie ;
Zhou, Weihua ;
Wahl, Dantel R. ;
Lan, Ping ;
Tian, Jie ;
Wan, Xiangbo .
LANCET DIGITAL HEALTH, 2022, 4 (01) :E8-E17
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577