Automatic dataset generation for automated program repair of bugs and vulnerabilities through SonarQube

被引:1
作者
del-Hoyo-Gabaldon, Jesus -Angel [1 ]
Moreno-Cediel, Antonio [1 ]
Garcia-Lopez, Eva [1 ]
Garcia-Cabot, Antonio [1 ]
de-Fitero-Dominguez, David [1 ]
机构
[1] Univ Alcala, Dept Ciencias Comp, Alcala De Henares 28805, Spain
关键词
Artificial intelligence; Machine learning; Natural language processing; Automated program repair; SonarQube; Automatic dataset generation;
D O I
10.1016/j.softx.2024.101664
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Software maintenance is an important and expensive stage during software development. Most of these tasks are done manually with static code analyzers, but this might change if new Artificial Intelligence approaches were used. For this purpose, huge amounts of data are extremely necessary to achieve a good performance by using traditional Data Science and Deep Learning techniques. Accordingly, this paper presents a software capable of creating, automatically, customizable coding error datasets in JSON format by using the SonarQube static analyzer. Consequently, coding error datasets could be easily created, encouraging new maintenance approaches (e.g., automated program repair through Deep Learning Models).
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Harer JA, 2018, Arxiv, DOI arXiv:1803.04497
  • [2] Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, 10.48550/arXiv.2303.08774]
  • [3] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [4] [Anonymous], IEEE J MAGAZINE IEEE
  • [5] [Anonymous], 2017, ISO/IEC/IEEE 12207, V1st, P1, DOI [10.1109/IEEESTD.2017.8100771.2017(E)2017-11, DOI 10.1109/IEEESTD.2017.8100771.2017(E)2017-11]
  • [6] [Anonymous], Data science and its relationship to big data and data-driven decision making, DOI [10.1089/big.2013.1508, DOI 10.1089/BIG.2013.1508]
  • [7] [Anonymous], ISO/IEC 23643:2020
  • [8] [Anonymous], Security hotspot
  • [9] Arcuri A, 2008, ICSE'08 PROCEEDINGS OF THE THIRTIETH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, P1003
  • [10] Basic concepts and taxonomy of dependable and secure computing
    Avizienis, A
    Laprie, JC
    Randell, B
    Landwehr, C
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2004, 1 (01) : 11 - 33