Knowledge distillation on individual vertebrae segmentation exploiting 3D U-Net

被引:8
|
作者
Serrador, Luis [1 ,2 ]
Villani, Francesca Pia [3 ]
Moccia, Sara [4 ,5 ]
Santos, Cristina P. [1 ,2 ]
机构
[1] Univ Minho, Ctr MicroElectroMechan Syst CMEMS, Guimaraes, Portugal
[2] Hosp Braga, Clin Acad Ctr Braga 2CA Braga, Braga, Portugal
[3] Univ Macerata, Dept Humanities, Macerata, Italy
[4] Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy
[5] Scuola Super Sant Anna, Dept Excellence Robot & AI, Pisa, Italy
关键词
Vertebra segmentation; 3D U-net; Knowledge distillation; Computed tomography;
D O I
10.1016/j.compmedimag.2024.102350
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advances in medical imaging have highlighted the critical development of algorithms for individual vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementation, including integration into healthcare systems. Consequently, our focus lies in exploring the application of knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step segmentation approach was employed. Firstly, the spine's location was determined by predicting a heatmap, indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a memory instance to record the already segmented vertebrae. KD methods were implemented by training a teacher network with performance similar to that found in the literature, and this knowledge was distilled to a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and (2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of 611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness, effective data augmentation methods were applied, including cleaning the memory instance to replicate the first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of 88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in the literature. Through knowledge distillation from the teacher network, the student network's performance improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters, 90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon (CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher, resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96% reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing methods using smaller neural networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [42] ACU-NET: A 3D ATTENTION CONTEXT U-NET FOR MULTIPLE SCLEROSIS LESION SEGMENTATION
    Hu, Chuan
    Kang, Guixia
    Hou, Beibei
    Ma, Yiyuan
    Labeau, Fabrice
    Su, Zichen
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1384 - 1388
  • [43] Volumetric Hippocampus Segmentation Using 3D U-Net Based On Transfer Learning
    Widodo, Ramadhan Sanyoto Sugiharso
    Purnama, I. Ketut Eddy
    Rachmadi, Reza Fuad
    2024 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS, CIVEMSA 2024, 2024,
  • [44] Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net
    van Elst, Sabien
    de Bloeme, Christiaan M. M.
    Noteboom, Samantha
    de Jong, Marcus C. C.
    Moll, Annette C. C.
    Goericke, Sophia
    de Graaf, Pim
    Caan, Matthan W. A.
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (03)
  • [45] Automated segmentation of computed tomography colonography images using a 3D U-Net
    Barr, Keiran
    Laframboise, Jacob
    Ungi, Tamas
    Hookey, Lawrence
    Fichtinger, Gabor
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [46] Segmentation of Macular Edema Datasets with Small Residual 3D U-Net Architectures
    Frawley, Jonathan
    Willcocks, Chris G.
    Habib, Maged
    Geenen, Caspar
    Steel, David H.
    Obara, Boguslaw
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 582 - 587
  • [47] DSU-Net: Distraction-Sensitive U-Net for 3D lung tumor segmentation
    Zhao, Junting
    Dang, Meng
    Chen, Zhihao
    Wan, Liang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 109
  • [48] 3D Deeply-Supervised U-Net Based Whole Heart Segmentation
    Tong, Qianqian
    Ning, Munan
    Si, Weixin
    Liao, Xiangyun
    Qin, Jing
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 : 224 - 232
  • [49] Automated Segmentation of Head and Neck Cancer Patients Using 3D U-Net
    Tong, N.
    Gou, S.
    Sheng, K.
    MEDICAL PHYSICS, 2018, 45 (06) : E472 - E472
  • [50] Automatic segmentation of nonhuman primate brain structures using 3D U-net
    Li, C.
    Zugaro, A. Galli
    Carr, Z.
    Korszen, S.
    Smith, G.
    Stigall, J.
    Salegio, E. A.
    Zagorchev, L.
    HUMAN GENE THERAPY, 2024, 35 (3-4) : A192 - A193