Knowledge distillation on individual vertebrae segmentation exploiting 3D U-Net

被引:8
|
作者
Serrador, Luis [1 ,2 ]
Villani, Francesca Pia [3 ]
Moccia, Sara [4 ,5 ]
Santos, Cristina P. [1 ,2 ]
机构
[1] Univ Minho, Ctr MicroElectroMechan Syst CMEMS, Guimaraes, Portugal
[2] Hosp Braga, Clin Acad Ctr Braga 2CA Braga, Braga, Portugal
[3] Univ Macerata, Dept Humanities, Macerata, Italy
[4] Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy
[5] Scuola Super Sant Anna, Dept Excellence Robot & AI, Pisa, Italy
关键词
Vertebra segmentation; 3D U-net; Knowledge distillation; Computed tomography;
D O I
10.1016/j.compmedimag.2024.102350
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advances in medical imaging have highlighted the critical development of algorithms for individual vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementation, including integration into healthcare systems. Consequently, our focus lies in exploring the application of knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step segmentation approach was employed. Firstly, the spine's location was determined by predicting a heatmap, indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a memory instance to record the already segmented vertebrae. KD methods were implemented by training a teacher network with performance similar to that found in the literature, and this knowledge was distilled to a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and (2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of 611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness, effective data augmentation methods were applied, including cleaning the memory instance to replicate the first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of 88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in the literature. Through knowledge distillation from the teacher network, the student network's performance improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters, 90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon (CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher, resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96% reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing methods using smaller neural networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Sub-region Segmentation of Brain Tumors from Multimodal MRI Images Using 3D U-Net
    Ali, Ammar Alhaj
    Katta, Rasin
    Jasek, Roman
    Chramco, Bronislav
    Krayem, Said
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 357 - 367
  • [32] MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net
    Vijay, Sanchit
    Guhan, Thejineaswar
    Srinivasan, Kathiravan
    Vincent, P. M. Durai Raj
    Chang, Chuan-Yu
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [33] Organ at Risk Segmentation in Head and Neck CT Images Using a Two-Stage Segmentation Framework Based on 3D U-Net
    Wang, Yueyue
    Zhao, Liang
    Wang, Manning
    Song, Zhijian
    IEEE ACCESS, 2019, 7 : 144591 - 144602
  • [34] GAU U-Net for multiple sclerosis segmentation
    Gamal, Roba
    Barka, Hoda
    Hadhoud, Mayada
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 73 : 625 - 634
  • [35] Combining K-Means Attention and Hierarchical Mimicking Strategy for 3D U-Net Based Brain Tumor Segmentation
    Lin, Runlong
    Wang, Shaoyu
    Chen, Qiang
    Cai, Zhengwei
    Zhu, Yian
    Hu, Yun
    2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), 2021, : 92 - 96
  • [36] A 3D attention U-Net network and its application in geological model parameterization
    Li X.
    Li X.
    Yan L.
    Zhou T.
    Li S.
    Wang J.
    Li X.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2023, 50 (01): : 167 - 173
  • [37] Knee orientation detection in MR scout scans using 3D U-Net
    Li, Chen
    Bhatia, Parmeet
    Zhao, Yu
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [38] A 3D attention U-Net network and its application in geological model parameterization
    Li, Xiaobo
    Li, Xin
    Yan, Lin
    Zhou, Tenghua
    Li, Shunming
    Wang, Jiqiang
    Li, Xinhao
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2023, 50 (01) : 183 - 190
  • [39] Exploring 3D U-Net Training Configurations and Post-processing Strategies for the MICCAI 2023 Kidney and Tumor Segmentation Challenge
    Uhm, Kwang-Hyun
    Cho, Hyunjun
    Xu, Zhixin
    Lim, Seohoon
    Jung, Seung-Won
    Hong, Sung-Hoo
    Ko, Sung-Jea
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2023, 2024, 14540 : 8 - 13
  • [40] Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net
    Wu, Yun
    Shen, Huaiyan
    Tan, Yaya
    Shi, Yucheng
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (10) : 1915 - 1922