Knowledge distillation on individual vertebrae segmentation exploiting 3D U-Net

被引:8
|
作者
Serrador, Luis [1 ,2 ]
Villani, Francesca Pia [3 ]
Moccia, Sara [4 ,5 ]
Santos, Cristina P. [1 ,2 ]
机构
[1] Univ Minho, Ctr MicroElectroMechan Syst CMEMS, Guimaraes, Portugal
[2] Hosp Braga, Clin Acad Ctr Braga 2CA Braga, Braga, Portugal
[3] Univ Macerata, Dept Humanities, Macerata, Italy
[4] Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy
[5] Scuola Super Sant Anna, Dept Excellence Robot & AI, Pisa, Italy
关键词
Vertebra segmentation; 3D U-net; Knowledge distillation; Computed tomography;
D O I
10.1016/j.compmedimag.2024.102350
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advances in medical imaging have highlighted the critical development of algorithms for individual vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementation, including integration into healthcare systems. Consequently, our focus lies in exploring the application of knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step segmentation approach was employed. Firstly, the spine's location was determined by predicting a heatmap, indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a memory instance to record the already segmented vertebrae. KD methods were implemented by training a teacher network with performance similar to that found in the literature, and this knowledge was distilled to a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and (2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of 611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness, effective data augmentation methods were applied, including cleaning the memory instance to replicate the first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of 88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in the literature. Through knowledge distillation from the teacher network, the student network's performance improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters, 90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon (CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher, resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96% reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing methods using smaller neural networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Kidney segmentation using 3D U-Net localized with Expectation Maximization
    Bazgir, Omid
    Barck, Kai
    Carano, Richard A. D.
    Weimer, Robby M.
    Xie, Luke
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 22 - 25
  • [22] Direct quantification of epistemic and aleatoric uncertainty in 3D U-net segmentation
    Jones, Craig K.
    Wang, Guoqing
    Yedavalli, Vivek
    Sair, Haris
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (03)
  • [23] Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans
    Boers, T. G. W.
    Hu, Y.
    Gibson, E.
    Barratt, D. C.
    Bonmati, E.
    Krdzalic, J.
    van der Heijden, F.
    Hermans, J. J.
    Huisman, H. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (06):
  • [24] Improved Medical Image Segmentation Model Based on 3D U-Net
    林威
    范红
    胡晨熙
    杨宜
    禹素萍
    倪林
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (04) : 311 - 316
  • [25] U-net Segmentation of Lung Cancer CT Scans for 3D Rendering
    Ismail, Hanin Monir
    McKee, Gerard T.
    2024 5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC 2024, 2024, : 35 - 40
  • [26] 3D U-Net with Trans-coder for Brain Tumor Segmentation
    Zhang, Tingting
    Xu, Dan
    He, Kangjian
    Zhang, Hao
    Fu, Yuting
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [27] A 3D Dual Path U-Net of Cancer Segmentation Based on MRI
    He, Yu
    Yu, Xi
    Liu, Chang
    Zhang, Jian
    Hu, Ke
    Zhu, Hong Chao
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 268 - 272
  • [28] 3d U-Net with ROI Segmentation of Kidneys and Masses in CT Scans
    Mitchell, Connor
    Xing, Shuwei
    Fenster, Aaron
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2023, 2024, 14540 : 93 - 96
  • [29] Auto Segmentation of Male Pelvis on CBCT Using 3D U-Net
    Qiu, R. L. J.
    Ma, T.
    Stephans, K.
    Shah, C.
    Godley, A.
    Xia, P.
    MEDICAL PHYSICS, 2019, 46 (06) : E138 - E138
  • [30] DEU-Net: Dual Encoder U-Net for 3D Medical Image Segmentation
    Zhou, Yuxiang
    Kang, Xin
    Ren, Fuji
    Nakagawa, Satoshi
    Shan, Xiao
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2735 - 2741