Copula-based pairwise estimator for quantile regression with hierarchical missing data

被引:1
作者
Verhasselt, Anneleen [1 ]
Florez, Alvaro J. [1 ,2 ,5 ]
Molenberghs, Geert [1 ,3 ]
Van Keilegom, Ingrid [4 ]
机构
[1] Univ Hasselt, Data Sci Inst, I BioStat, Diepenbeek, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, I Biostat, Leuven, Belgium
[4] Katholieke Univ Leuven, ORSTAT, Leuven, Belgium
[5] Univ Valle, Fac Engn, Sch Stat, Edificio E56,Ciudad Univ-Melendez,Calle 13 100-00, Cali, Colombia
关键词
asymmetric Laplace distribution; copulas; inverse probability weighting; quantile regression; longitudinal data; missing data; pairwise estimator; LIKELIHOOD-ESTIMATION; MEDIAN REGRESSION; LONGITUDINAL DATA; INFERENCE; MODELS;
D O I
10.1177/1471082X231225806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression can be a helpful technique for analysing clustered (such as longitudinal) data. It can characterize the change in response over time without making distributional assumptions and is robust to outliers in the response. A quantile regression model using a copula-based multivariate asymmetric Laplace distribution for addressing correlation due to clustering is introduced. Furthermore, we propose a pairwise estimator for the parameters of the model. Since it is based on pseudo-likelihood, it needs to be modified to avoid bias in presence of missingness. Therefore, we enhance the model with inverse probability weighting. In this way, our proposal is unbiased under the missing at random assumption. Based on simulations, the estimator is efficient and computationally fast. Finally, the methodology is illustrated using a study in ophthalmology.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 62 条
[41]  
Molenberghs G., 2007, MISSING DATA CLIN ST
[42]  
Molenberghs G., 2014, Handbook of Missing Data Methodology
[43]   Every missingness not at random model has a missingness at random counterpart with equal fit [J].
Molenberghs, Geert ;
Beunckens, Caroline ;
Sotto, Cristina ;
Kenward, Michael G. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :371-388
[44]  
Molenberghs G, 2011, STAT SINICA, V21, P187
[45]  
Nelsen R.B., 2006, An Introduction to Copulas, DOI [10.1007/0-387-28678-0, DOI 10.1007/0-387-28678-0]
[46]   Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress [J].
Petrella, Lea ;
Raponi, Valentina .
JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 :70-84
[47]  
Portnoy S, 1997, STAT SCI, V12, P279
[48]   Distribution of random correlation matrices: Hyperspherical parameterization of the Cholesky factor [J].
Pourahmadi, Mohsen ;
Wang, Xiao .
STATISTICS & PROBABILITY LETTERS, 2015, 106 :5-12
[49]   SEMIPARAMETRIC EFFICIENCY IN MULTIVARIATE REGRESSION-MODELS WITH MISSING DATA [J].
ROBINS, JM ;
ROTNITZKY, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :122-129
[50]   TRANSFORMATION OF NONPOSITIVE SEMIDEFINITE CORRELATION-MATRICES [J].
ROUSSEEUW, PJ ;
MOLENBERGHS, G .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (04) :965-984