Copula-based pairwise estimator for quantile regression with hierarchical missing data

被引:1
作者
Verhasselt, Anneleen [1 ]
Florez, Alvaro J. [1 ,2 ,5 ]
Molenberghs, Geert [1 ,3 ]
Van Keilegom, Ingrid [4 ]
机构
[1] Univ Hasselt, Data Sci Inst, I BioStat, Diepenbeek, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, I Biostat, Leuven, Belgium
[4] Katholieke Univ Leuven, ORSTAT, Leuven, Belgium
[5] Univ Valle, Fac Engn, Sch Stat, Edificio E56,Ciudad Univ-Melendez,Calle 13 100-00, Cali, Colombia
关键词
asymmetric Laplace distribution; copulas; inverse probability weighting; quantile regression; longitudinal data; missing data; pairwise estimator; LIKELIHOOD-ESTIMATION; MEDIAN REGRESSION; LONGITUDINAL DATA; INFERENCE; MODELS;
D O I
10.1177/1471082X231225806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression can be a helpful technique for analysing clustered (such as longitudinal) data. It can characterize the change in response over time without making distributional assumptions and is robust to outliers in the response. A quantile regression model using a copula-based multivariate asymmetric Laplace distribution for addressing correlation due to clustering is introduced. Furthermore, we propose a pairwise estimator for the parameters of the model. Since it is based on pseudo-likelihood, it needs to be modified to avoid bias in presence of missingness. Therefore, we enhance the model with inverse probability weighting. In this way, our proposal is unbiased under the missing at random assumption. Based on simulations, the estimator is efficient and computationally fast. Finally, the methodology is illustrated using a study in ophthalmology.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 62 条
[11]   A finite smoothing algorithm for quantile regression [J].
Chen, Colin .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (01) :136-164
[12]   Improving point and interval estimators of monotone functions by rearrangement [J].
Chernozhukov, V. ;
Fernandez-Val, I. ;
Galichon, A. .
BIOMETRIKA, 2009, 96 (03) :559-575
[13]   Semiparametric copula quantile regression for complete or censored data [J].
De Backer, Mickael ;
El Ghouch, Anouar ;
Van Keilegom, Ingrid .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01) :1660-1698
[14]   Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling [J].
Farcomeni, Alessio ;
Viviani, Sara .
STATISTICS IN MEDICINE, 2015, 34 (07) :1199-1213
[15]  
Fitzmaurice GM., 2015, HDB MISSING DATA, P139
[16]   Quantile regression for longitudinal data via the multivariate generalized hyperbolic distribution [J].
Florez, Alvaro J. ;
Keilegom, Ingrid Van ;
Molenberghs, Geert ;
Verhasselt, Anneleen .
STATISTICAL MODELLING, 2022, 22 (06) :566-584
[17]   Quantile regression for longitudinal data with a working correlation model [J].
Fu, Liya ;
Wang, You-Gan .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (08) :2526-2538
[18]  
Furno M., 2018, Quantile regression: estimation and simulation
[19]  
Galecki A, 2013, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4614-3900-4
[20]  
Galvao A., 2017, HDB QUANTILE REGRESS, P369