Copula-based pairwise estimator for quantile regression with hierarchical missing data

被引:0
|
作者
Verhasselt, Anneleen [1 ]
Florez, Alvaro J. [1 ,2 ,5 ]
Molenberghs, Geert [1 ,3 ]
Van Keilegom, Ingrid [4 ]
机构
[1] Univ Hasselt, Data Sci Inst, I BioStat, Diepenbeek, Belgium
[2] Univ Valle, Sch Stat, Cali, Colombia
[3] Katholieke Univ Leuven, I Biostat, Leuven, Belgium
[4] Katholieke Univ Leuven, ORSTAT, Leuven, Belgium
[5] Univ Valle, Fac Engn, Sch Stat, Edificio E56,Ciudad Univ-Melendez,Calle 13 100-00, Cali, Colombia
关键词
asymmetric Laplace distribution; copulas; inverse probability weighting; quantile regression; longitudinal data; missing data; pairwise estimator; LIKELIHOOD-ESTIMATION; MEDIAN REGRESSION; LONGITUDINAL DATA; INFERENCE; MODELS;
D O I
10.1177/1471082X231225806
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression can be a helpful technique for analysing clustered (such as longitudinal) data. It can characterize the change in response over time without making distributional assumptions and is robust to outliers in the response. A quantile regression model using a copula-based multivariate asymmetric Laplace distribution for addressing correlation due to clustering is introduced. Furthermore, we propose a pairwise estimator for the parameters of the model. Since it is based on pseudo-likelihood, it needs to be modified to avoid bias in presence of missingness. Therefore, we enhance the model with inverse probability weighting. In this way, our proposal is unbiased under the missing at random assumption. Based on simulations, the estimator is efficient and computationally fast. Finally, the methodology is illustrated using a study in ophthalmology.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 50 条
  • [1] COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA
    Wang, Huixia Judy
    Feng, Xingdong
    Dong, Chen
    STATISTICA SINICA, 2019, 29 (01) : 245 - 264
  • [2] Weighted quantile regression for analyzing health care cost data with missing covariates
    Sherwood, Ben
    Wang, Lan
    Zhou, Xiao-Hua
    STATISTICS IN MEDICINE, 2013, 32 (28) : 4967 - 4979
  • [3] Computation and application of Copula-based weighted average quantile regression
    Xie, Qichang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 182 - 195
  • [4] Quantile and expectile copula-based hidden Markov regression models for the analysis of the cryptocurrency market
    Foroni, Beatrice
    Merlo, Luca
    Petrella, Lea
    STATISTICAL MODELLING, 2024,
  • [5] Copula-based nonlinear quantile autoregression
    Chen, Xiaohong
    Koenker, Roger
    Xiao, Zhijie
    ECONOMETRICS JOURNAL, 2009, 12 (01) : S50 - S67
  • [6] Copula-based regression models: A survey
    Kolev, Nikolai
    Paiva, Delhi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (11) : 3847 - 3856
  • [7] On copula-based conditional quantile estimators
    Remillard, Bruno
    Nasri, Bouchra
    Bouezmarni, Taoufik
    STATISTICS & PROBABILITY LETTERS, 2017, 128 : 14 - 20
  • [8] Copula and composite quantile regression-based estimating equations for longitudinal data
    Wang, Kangning
    Shan, Wen
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (03) : 441 - 455
  • [9] A quantile regression estimator for censored data
    Leng, Chenlei
    Tong, Xingwei
    BERNOULLI, 2013, 19 (01) : 344 - 361
  • [10] QUANTILE REGRESSION FOR COMPETING RISKS DATA WITH MISSING CAUSE OF FAILURE
    Sun, Yanqing
    Wang, Huixia Judy
    Gilbert, Peter B.
    STATISTICA SINICA, 2012, 22 (02) : 703 - 728