Infinitely many low- and high-energy solutions for double phase problems with nonstandard growth

被引:0
作者
Ge, Bin [1 ]
Cao, Qing-Hai [1 ]
Yuan, Wen-Shuo [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
MULTIPLE SOLUTIONS; EXISTENCE; EIGENVALUES; SPACES;
D O I
10.1063/5.0158401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is the study a class of double phase problems with variable exponent. Using the Clark's theorem and the symmetric mountain pass lemma, we prove the existence of infinitely many small solutions and infinitely many large solutions, respectively.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Variational inequalities in Musielak-Orlicz-Sobolev spaces [J].
Benkirane, A. ;
El Vally, M. Sidi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :787-811
[2]   Existence and Nonexistence of Solutions for the Double Phase Problem [J].
Cao, Xiao-Feng ;
Ge, Bin ;
Yuan, Wen-Shou .
RESULTS IN MATHEMATICS, 2021, 76 (03)
[3]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[4]  
Chang K. C., 1996, CRITICAL POINT THEOR
[5]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[6]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[7]   Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian [J].
El Manouni, Said ;
Marino, Greta ;
Winkert, Patrick .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :304-320
[8]   Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications [J].
Fan, Xianling ;
Guan, Chun-Xia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :163-175
[9]   On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems [J].
Fukagai, Nobuyoshi ;
Narukawa, Kimiaki .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :539-564
[10]   Constant sign and nodal solutions for superlinear double phase problems [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) :613-626