New Template Synthesis of Anomalously Large Capacity Hard Carbon for Na- and K-Ion Batteries

被引:79
作者
Igarashi, Daisuke [1 ]
Tanaka, Yoko [1 ]
Kubota, Kei [1 ,2 ]
Tatara, Ryoichi [1 ]
Maejima, Hayato [1 ]
Hosaka, Tomooki [1 ]
Komaba, Shinichi [1 ]
机构
[1] Tokyo Univ Sci, Dept Appl Chem, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, Japan
[2] Natl Inst Mat Sci NIMS, Res Ctr Energy & Environm Mat GREEN, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
anode materials; hard carbon; K-ion batteries; Na-ion batteries; nanopores; template synthesis; X-RAY-SCATTERING; SODIUM INSERTION; POROUS CARBONS; LITHIUM; MICROPORE; MODEL;
D O I
10.1002/aenm.202302647
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon (HC) is a promising negative-electrode material for Na-ion batteries. HC electrochemically stores Na+ ions, resulting in a non-stoichiometric chemical composition depending on their nanoscale structure, including the carbon framework, and interstitial pores. Therefore, optimizing these structures for Na storage by altering the synthesis conditions can enhance the capacity of Na-ion batteries. In this study, HCs using MgO, ZnO, and CaCO3 as nanopore templates are systematically investigated, and the ZnO template is found to be particularly effective. By optimizing the concentration of ZnO embedded in the carbon matrix, utilizing a blend of zinc gluconate, and zinc acetate as starting materials, the optimal ZnO-template HC demonstrates a reversible capacity of 464 mAh g-1 (corresponding to NaC4.8) with high initial coulombic efficiency of 91.7% and low average potential of 0.18 V versus Na+/Na. Thus, a Na-ion battery full cell consisting of Na5/6Ni1/3Fe1/6Mn1/6Ti1/3O2 and the optimized ZnO-template HC demonstrates a remarkable energy density of 312 Wh kg-1, comparable to that of a Li-ion battery with LiFePO4 and graphite. Moreover, the ZnO-template HC in a K half-cell also displays a significant capacity of 381 mAh g-1, that is, KC5.8 where the alkali content is higher than stage-1 graphite intercalation compounds, LiC6 and KC8. Novel hard carbons (HCs) using MgO, ZnO, and CaCO3 as nanopore templates are systematically studied, and the ZnO template is found to be particularly effective in arranging the carbon structure for Na-and K-storage. The optimal ZnO-template HC successfully exhibits large reversible capacity of 464 mAh g-1 with high initial coulombic efficiency and low working potential.image
引用
收藏
页数:11
相关论文
共 56 条
[1]   Sodium Storage Mechanism Investigations through Structural Changes in Hard Carbons [J].
Alptekin, Hande ;
Au, Heather ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
Goktas, Mustafa ;
Headen, Thomas F. ;
Adelhelm, Philipp ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) :9918-9927
[2]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[3]   A novel K-ion battery: hexacyanoferrate(II)/graphite cell [J].
Bie, Xiaofei ;
Kubota, Kei ;
Hosaka, Tomooki ;
Chihara, Kuniko ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) :4325-4330
[4]   Caramelization as a Key Stage for the Preparation of Monolithic Hard Carbon with Advanced Performance in Sodium-Ion Batteries [J].
Bobyleva, Zoya V. ;
Drozhzhin, Oleg A. ;
Alekseeva, Anastasia M. ;
Dosaev, Kirill A. ;
Peters, Georgy S. ;
Lakienko, Grigorii P. ;
Perfilyeva, Tatiana I. ;
Sobolev, Nikita A. ;
Maslakov, Konstantin I. ;
Savilov, Serguei V. ;
Abakumov, Artem M. ;
Antipov, Evgeny V. .
ACS APPLIED ENERGY MATERIALS, 2022, 6 (01) :181-190
[5]   Model of micropore closure in hard carbon prepared from sucrose [J].
Buiel, ER ;
George, AE ;
Dahn, JR .
CARBON, 1999, 37 (09) :1399-1407
[6]   Pre-doping iodine to restrain formation of low-active graphitic-N in hard carbon for significantly boosting sodium storage performance [J].
Chen, Jie ;
Hu, Tao ;
Zou, Zhuo ;
Zeng, Qingxin ;
Jiang, Yali ;
Tang, Chuyue ;
Tang, Chun ;
Li, Wei ;
Fang, Changxiang ;
Sun, Wei ;
Zeng, Lingzhi ;
Li, Chang Ming .
CARBON, 2022, 186 :193-204
[7]   Repeatedly Recyclable 3D Printing Catalyst-Free Dynamic Thermosetting Photopolymers [J].
Cui, Jingjing ;
Liu, Fukang ;
Lu, Zhe ;
Feng, Shiwei ;
Liang, Chen ;
Sun, Yongding ;
Cui, Jin ;
Zhang, Biao .
ADVANCED MATERIALS, 2023, 35 (20)
[8]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[9]   Towards an atomistic understanding of disordered carbon electrode materials [J].
Deringer, Volker L. ;
Merlet, Celine ;
Hu, Yuchen ;
Lee, Tae Hoon ;
Kattirtzi, John A. ;
Pecher, Oliver ;
Csanyi, Gabor ;
Elliott, Stephen R. ;
Grey, Clare P. .
CHEMICAL COMMUNICATIONS, 2018, 54 (47) :5988-5991
[10]   Zinc gluconate derived porous carbon electrode assisted high rate and long cycle performance supercapacitor [J].
Duan, Gaigai ;
Xiao, Junlei ;
Chen, Lian ;
Zhang, Chunmei ;
Jian, Shaoju ;
He, Shuijian ;
Wang, Feng .
JOURNAL OF ENERGY STORAGE, 2023, 67