Uncertainty-Aware QoT Forecasting in Optical Networks with Bayesian Recurrent Neural Networks

被引:2
作者
Di Cicco, Nicola [1 ]
Talpini, Jacopo [2 ]
Ibrahimi, Memedhe [1 ]
Savi, Marco [2 ]
Tornatore, Massimo [1 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn DEIB, Milan, Italy
[2] Univ Milano Bicocca, Dept Informat Syst & Commun DISCo, Milan, Italy
来源
ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS | 2023年
关键词
Quality-of-Transmission; Machine Learning; Uncertainty; Regression; Forecasting; PREDICTION;
D O I
10.1109/ICC45041.2023.10278767
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We consider the problem of forecasting the Quality-of-Transmission (QoT) of deployed lightpaths in a Wavelength Division Multiplexing (WDM) optical network. QoT forecasting plays a determinant role in network management and planning, as it allows network operators to proactively plan maintenance or detect anomalies in a lightpath. To this end, we leverage Bayesian Recurrent Neural Networks for learning uncertainty-aware probabilistic QoT forecasts, i.e., for modelling a probability distribution of the QoT over a time horizon. We evaluate our proposed approach on the open-source Microsoft Wide Area Network (WAN) optical backbone dataset. Our illustrative numerical results show that our approach not only outperforms state-of-the-art models from literature, but also predicts intervals providing near-optimal empirical coverage. As such, we demonstrate that uncertainty-aware probabilistic modelling enables the application of QoT forecasting in risk-sensitive application scenarios.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 28 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]  
Aladin S, 2020, 2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)
[3]   Machine-Learning-Based Lightpath QoT Estimation and Forecasting [J].
Allogba, Stephanie ;
Aladin, Sandra ;
Tremblay, Christine .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) :3115-3127
[4]   Multivariate Machine Learning Models for Short-Term Forecast of Lightpath Performance [J].
Allogba, Stephanie ;
Aladin, Sandra ;
Tremblay, Christine .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (22) :7146-7158
[5]  
Andreoletti D, 2019, IEEE CONF COMPUT, P246, DOI [10.1109/INFCOMW.2019.8845132, 10.1109/infcomw.2019.8845132]
[6]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[7]  
Chouman H, 2021, 2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)
[8]   Leveraging Field Data for the Joint Optimization of Capacity and Availability in Low-Margin Optical Networks [J].
Delezoide, Camille ;
Ramantanis, Petros ;
Layec, Patricia .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (24) :6709-6718
[9]  
Di cicco Nicola, 2022, 2022 International Balkan Conference on Communications and Networking (BalkanCom), P21, DOI 10.1109/BalkanCom55633.2022.9900791
[10]   Elastic Optical Networking in the Microsoft Cloud [Invited] [J].
Filer, Mark ;
Gaudette, Jamie ;
Ghobadi, Monia ;
Mahajan, Ratul ;
Issenhuth, Tom ;
Klinkers, Buddy ;
Cox, Jeff .
JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2016, 8 (07) :A45-A54