CelebV-Text: A Large-Scale Facial Text-Video Dataset

被引:5
作者
Yu, Jianhui [1 ]
Zhu, Hao [2 ]
Jiang, Liming [3 ]
Loy, Chen Change [3 ]
Cai, Weidong [1 ]
Wu, Wayne [4 ]
机构
[1] Univ Sydney, Sydney, NSW 2006, Australia
[2] SenseTime Res, Hong Kong, Peoples R China
[3] Nanyang Technol Univ, S Lab, Singapore, Singapore
[4] Shanghai AI Lab, Shanghai, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.01422
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text-driven generation models are flourishing in video generation and editing. However, face-centric text-to-video generation remains a challenge due to the lack of a suitable dataset containing high-quality videos and highly relevant texts. This paper presents CelebV-Text, a large-scale, diverse, and high-quality dataset of facial text-video pairs, to facilitate research on facial text-to-video generation tasks. CelebV-Text comprises 70,000 in-the-wild face video clips with diverse visual content, each paired with 20 texts generated using the proposed semi-automatic text generation strategy. The provided texts are of high quality, describing both static and dynamic attributes precisely. The superiority of CelebV-Text over other datasets is demonstrated via comprehensive statistical analysis of the videos, texts, and text-video relevance. The effectiveness and potential of CelebV-Text are further shown through extensive self-evaluation. A benchmark is constructed with representative methods to standardize the evaluation of the facial text-to-video generation task. All data and models are publicly available.
引用
收藏
页码:14805 / 14814
页数:10
相关论文
共 67 条
  • [1] [Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.578
  • [2] [Anonymous], 2018, ECCV, DOI DOI 10.1007/978-3-030-01261-8_23
  • [3] [Anonymous], 2017, NeurIPS
  • [4] [Anonymous], 2016 IEEE INT C IMAG, DOI [DOI 10.1109/ICIP.2016.7533003, 10.1109/ICIP.2016.7533003]
  • [5] [Anonymous], 2018, P ACL
  • [6] [Anonymous], 2010, INT WORKSH IM AN MUL
  • [7] [Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00365
  • [8] [Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.495
  • [9] [Anonymous], 2014, P 2014 C EMPIRICAL M, DOI 10.3115/v1/D14-1082
  • [10] [Anonymous], 2019, ICML