GLOBAL STRONG/CLASSICAL SOLUTIONS TO THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES-ALLEN-CAHN SYSTEM WITH

被引:3
作者
Chen, Zhengzheng [1 ]
Duan, Ran [2 ]
He, Lin [3 ]
Li, Yeping [4 ]
机构
[1] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[4] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 03期
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes-Allen-Cahn system; Strong; classical so-; lutions; Density-dependent viscosity; Large initial data; DENSITY-DEPENDENT VISCOSITY; RAREFACTION WAVES; WEAK SOLUTIONS; SMOOTH SOLUTIONS; EQUATIONS; EXISTENCE; STABILITY; FLOWS; GAS;
D O I
10.3934/dcdsb.2023127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper is concerned with a one-dimensional isentropic compressible Navier-Stokes-Allen-Cahn system with density-dependent viscosity, which models the motion of a mixture of two viscous compressible fluids. The case when the pressure p(& rho;) = & rho;-r, the viscosity & nu;(& rho;, & chi;) = & rho;& alpha;, the interface thickness & delta;(& rho;) = & rho;l3 and the relaxation time function a(& rho;, & chi;, & chi;y) = & rho;A is considered, where & rho; and & chi; are the density and the phase variable, respectively, and & gamma;, & alpha;, & beta;, & lambda; & ISIN; R are parameters. Under some suitable assumptions on the parameters & gamma;, & alpha;, & beta;, & lambda; and the initial data, we prove the global existence and large-time behavior of nonvacuum strong and classical solutions to its Cauchy problem with large initial data. This appears to be the first global existence result on the Cauchy problem of the compressible Navier-Stokes-Allen-Cahn system with density-dependent viscosity and large data.
引用
收藏
页码:1146 / 1186
页数:41
相关论文
共 42 条
[1]   A generalization of the Navier-Stokes equations to two-phase flows [J].
Blesgen, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (10) :1119-1123
[2]   On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids [J].
Bresch, Didier ;
Desjardins, Benoit .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01) :57-90
[3]   New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension [J].
Burtea, Cosmin ;
Haspot, Boris .
NONLINEARITY, 2020, 33 (05) :2077-2105
[4]   Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum [J].
Chen, Mingtao ;
Guo, Xinwei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :350-373
[5]   Blow-up criterion and the global existence of strong/classical solutions to Navier-Stokes/Allen-Cahn system [J].
Chen, Senming ;
Zhu, Changjiang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[6]   Existence of weak solutions to steady Navier-Stokes/Allen-Cahn system [J].
Chen, Senming ;
Ji, Shanming ;
Wen, Huanyao ;
Zhu, Changjiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) :8331-8349
[7]   Global existence of weak solution to compressible Nayier-Stokes/Allen-Cahn system in three dimensions [J].
Chen, Senming ;
Wen, Huanyao ;
Zhu, Changjiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) :1265-1295
[8]  
Chen Y., 2021, ARXIV
[9]   Global strong solution to a thermodynamic compressible diffuse interface model with temperature-dependent heat conductivity in 1D [J].
Chen, Yazhou ;
He, Qiaolin ;
Huang, Bin ;
Shi, Xiaoding .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) :12945-12962
[10]   Asymptotics of the 1D compressible Navier-Stokes equations with density-dependent viscosity [J].
Chen, Zhengzheng ;
Zhao, Huijiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :912-953