The onset of penetrative convection in an inclined porous layer

被引:7
作者
Arnone, Giuseppe [1 ]
Cantini, Giulio [2 ,3 ]
Capone, Florinda [1 ]
Carnevale, Mauro [2 ,3 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia,Monte S Angelo, I-80126 Naples, Italy
[2] Univ Bath, Dept Mech Engn, Claverton Down, Bath BA2 7AY, England
[3] CERN, Geneva, Switzerland
关键词
Penetrative convection; Inclined layer; Porous media; Instability analysis; Nonlinear stability; Chebyshev-tau method; NATURAL-CONVECTION; STABILITY; FLUID; INSTABILITY; CURRENTS; FLOW;
D O I
10.1016/j.ijheatmasstransfer.2023.124532
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present article, a model for penetrative convection in a fluid-saturated inclined porous medium is analyzed. Penetrative convection occurs when an unstably stratified fluid moves into a stably stratified region. In this study, it will be shown that the inclination of the layer plays a relevant role for the penetrative thermal convection of a fluid-saturated porous medium. The results reported in the literature for the limiting case of horizontal layer are recovered and the numerical results for the linear instability, obtained via the Chebyshev-������ method, show that the most destabilizing perturbations are the longitudinal and, as expected, the transverse ones destabilize only up to a certain critical inclination angle of the layer. Moreover, in the numerical analysis of the three-dimensional perturbations, we show that the longitudinal perturbations are the most destabilizing not only with respect to the transverse but also with respect to any general perturbation. We also give nonlinear stability results for the longitudinal perturbations via the weighted energy method.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids [J].
Allouche, M. H. ;
Millet, S. ;
Botton, V. ;
Henry, D. ;
Ben Hadid, H. ;
Rousset, F. .
PHYSICAL REVIEW E, 2015, 92 (06)
[2]   Density inversion phenomenon in porous penetrative convection [J].
Arnone, G. ;
Capone, F. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 147
[3]   The energy method analysis of the Darcy-Benard problem with viscous dissipation [J].
Barletta, A. ;
Mulone, G. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (01) :25-33
[4]   The Horton-Rogers-Lapwood problem for an inclined porous layer with permeable boundaries [J].
Barletta, A. ;
Celli, M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2217)
[5]   Thermoconvective instabilities in an inclined porous channel heated from below [J].
Barletta, A. ;
Storesletten, L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (13-14) :2724-2733
[6]  
Benard H., 1900, REV GEN SCI PURE APP, V11, P1261, DOI DOI 10.1051/JPHYSTAP:019000090051300
[7]   The onset of thermal convection in anisotropic and rotating bidisperse porous media [J].
Capone, F. ;
Gentile, M. ;
Massa, G. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04)
[8]   Sharp stability results in LTNE rotating anisotropic porous layer [J].
Capone, F. ;
Gentile, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 134 :661-664
[9]   Penetrative convection in anisotropic porous media with variable permeability [J].
Capone, F. ;
Gentile, M. ;
Hill, A. A. .
ACTA MECHANICA, 2011, 216 (1-4) :49-58
[10]   Onset of convection in LTNE Darcy-Brinkman anisotropic porous layer: Cattaneo effect in the solid [J].
Capone, Florinda ;
Gianfrani, Jacopo A. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 139