A Data-Driven Approach to Beating SAA Out of Sample

被引:3
作者
Gotoh, Jun-ya [1 ]
Kim, Michael Jong [2 ]
Lim, Andrew E. B. [3 ,4 ]
机构
[1] Chuo Univ, Dept Data Sci Business Innovat, Tokyo 1128551, Japan
[2] Univ British Columbia, Sauder Sch Business, Vancouver, BC V6T 1Z2, Canada
[3] Natl Univ Singapore, Dept Analyt & Operat, Dept Finance, Singapore 119245, Singapore
[4] Natl Univ Singapore, Inst Operat Res & Analyt, Singapore 119245, Singapore
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
distributionally optimistic optimization; distributionally robust optimization; sample average approximation; data-driven optimization; model uncertainty; worst case sensitivity; out-of-sample performance; ROBUST SOLUTIONS; OPTIMIZATION; BIAS;
D O I
10.1287/opre.2021.0393
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Whereas solutions of distributionally robust optimization (DRO) problems can sometimes have a higher out-of-sample expected reward than the sample average approximation (SAA), there is no guarantee. In this paper, we introduce a class of distributionally optimistic optimization (DOO) models and show that it is always possible to "beat" SAA out-of-sample if we consider not just worst case (DRO) models but also best case (DOO) ones. We also show, however, that this comes at a cost: optimistic solutions are more sensitive to model error than either worst case or SAA optimizers and, hence, are less robust, and calibrating the worst or best case model to outperform SAA may be difficult when data are limited.
引用
收藏
页数:14
相关论文
共 28 条
[1]  
Anderson EJ, 2020, INFORMS J OPTIM, V4, P90
[2]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[3]  
Bertsimas D, 2016, Arxiv, DOI arXiv:1408.4445
[4]   Adaptive Robust Optimization for the Security Constrained Unit Commitment Problem [J].
Bertsimas, Dimitris ;
Litvinov, Eugene ;
Sun, Xu Andy ;
Zhao, Jinye ;
Zheng, Tongxin .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (01) :52-63
[5]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[6]  
Duchi J, 2017, Arxiv, DOI arXiv:1610.02581
[7]  
Duchi J, 2018, Arxiv, DOI arXiv:1610.03425
[8]   Robust solutions to least-squares problems with uncertain data [J].
ElGhaoui, L ;
Lebret, H .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) :1035-1064
[9]  
Gotoh JY, 2020, Arxiv, DOI arXiv:2010.10794
[10]   Calibration of Distributionally Robust Empirical Optimization Models [J].
Gotoh, Jun-ya ;
Kim, Michael Jong ;
Lim, Andrew E. B. .
OPERATIONS RESEARCH, 2021, 69 (05) :1630-1650