Second-Order Enhanced Optimality Conditions and Constraint Qualifications

被引:0
作者
Bai, Kuang [1 ]
Song, Yixia [2 ]
Zhang, Jin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Math, Peng Cheng Lab, Shenzhen 518055, Peoples R China
关键词
Holder error bounds; Nonlinear Programming; Second-order constraint qualifications; Second-order optimality conditions; LAGRANGE MULTIPLIERS; FRITZ JOHN; EQUALITY; PSEUDONORMALITY; CONVERGENCE; ALGORITHM; POINTS;
D O I
10.1007/s10957-023-02276-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study second-order necessary optimality conditions for smooth nonlinear programming problems. Employing the second-order variational analysis and generalized differentiation, under the weak constant rank (WCR) condition, we derive an enhanced version of the classical weak second-order Fritz-John condition which contains some new information on multipliers. Based on this enhanced weak second-order Fritz-John condition, we introduce the weak second-order enhanced Karush-Kuhn-Tucker condition and propose some associated second-order constraint qualifications. Finally, using our new second-order constraint qualifications, we establish new sufficient conditions for the existence of a Holder error bound condition.
引用
收藏
页码:1264 / 1284
页数:21
相关论文
共 53 条
  • [1] Abadie J., 1967, Nonlinear Programming, P21
  • [2] On second-order optimality conditions for nonlinear programming
    Andreani, R.
    Martinez, J. M.
    Schuverdt, M. L.
    [J]. OPTIMIZATION, 2007, 56 (5-6) : 529 - 542
  • [3] On the relation between constant positive linear dependence condition and quasinormality constraint qualification
    Andreani, R
    Martinez, JM
    Schuverdt, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (02) : 473 - 485
  • [4] Constant-Rank Condition and Second-Order Constraint Qualification
    Andreani, R.
    Echaguee, C. E.
    Schuverdt, M. L.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) : 255 - 266
  • [5] Second-order negative-curvature methods for box-constrained and general constrained optimization
    Andreani, R.
    Birgin, E. G.
    Martinez, J. M.
    Schuverdt, M. L.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (02) : 209 - 236
  • [6] A second-order sequential optimality condition associated to the convergence of optimization algorithms
    Andreani, Roberto
    Haeser, Gabriel
    Ramos, Alberto
    Silva, Paulo J. S.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1902 - 1929
  • [7] A CONE-CONTINUITY CONSTRAINT QUALIFICATION AND ALGORITHMIC CONSEQUENCES
    Andreani, Roberto
    Martinez, Jose Mario
    Ramos, Alberto
    Silva, Paulo J. S.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 96 - 110
  • [8] TWO NEW WEAK CONSTRAINT QUALIFICATIONS AND APPLICATIONS
    Andreani, Roberto
    Haeser, Gabriel
    Laura Schuverdt, Maria
    Silva, Paulo J. S.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (03) : 1109 - 1135
  • [9] A relaxed constant positive linear dependence constraint qualification and applications
    Andreani, Roberto
    Haeser, Gabriel
    Laura Schuverdt, Maria
    Silva, Paulo J. S.
    [J]. MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) : 255 - 273
  • [10] On sequential optimality conditions for smooth constrained optimization
    Andreani, Roberto
    Haeser, Gabriel
    Martinez, J. M.
    [J]. OPTIMIZATION, 2011, 60 (05) : 627 - 641