Mapping of QTLs for morphophysiological and yield traits under water-deficit stress and well-watered conditions in maize

被引:10
作者
Sarkar, Basudeb [1 ]
Varalaxmi, Yellisetty [1 ]
Vanaja, Maddi [1 ]
RaviKumar, Nakka [1 ]
Prabhakar, Mathyam [1 ]
Yadav, Sushil Kumar [1 ]
Maheswari, Mandapaka [1 ]
Singh, Vinod Kumar [1 ]
机构
[1] Cent Res Inst Dryland Agr, Indian Council Agr Res ICAR, Div Crop Sci, Hyderabad, Telangana, India
关键词
drought; physiological and yield traits; SNPs; QTLs; candidate genes; DROUGHT-RELATED TRAITS; ABIOTIC STRESS; GRAIN-YIELD; MIXED-MODEL; LOCI; IDENTIFICATION; GENOME; POPULATIONS; TOLERANCE; NETWORKS;
D O I
10.3389/fpls.2023.1124619
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize productivity is significantly impacted by drought; therefore, improvement of drought tolerance is a critical goal in maize breeding. To achieve this, a better understanding of the genetic basis of drought tolerance is necessary. Our study aimed to identify genomic regions associated with drought tolerance-related traits by phenotyping a mapping population of recombinant inbred lines (RILs) for two seasons under well-watered (WW) and water-deficit (WD) conditions. We also used single nucleotide polymorphism (SNP) genotyping through genotyping-by-sequencing to map these regions and attempted to identify candidate genes responsible for the observed phenotypic variation. Phenotyping of the RILs population revealed significant variability in most of the traits, with normal frequency distributions, indicating their polygenic nature. We generated a linkage map using 1,241 polymorphic SNPs distributed over 10 chromosomes (chrs), covering a total genetic distance of 5,471.55 cM. We identified 27 quantitative trait loci (QTLs) associated with various morphophysiological and yield-related traits, with 13 QTLs identified under WW conditions and 12 under WD conditions. We found one common major QTL (qCW2-1) for cob weight and a minor QTL (qCH1-1) for cob height that were consistently identified under both water regimes. We also detected one major and one minor QTL for the Normalized Difference Vegetation Index (NDVI) trait under WD conditions on chr 2, bin 2.10. Furthermore, we identified one major QTL (qCH1-2) and one minor QTL (qCH1-1) on chr 1 that were located at different genomic positions to those identified in earlier studies. We found co-localized QTLs for stomatal conductance and grain yield on chr 6 (qg(s)6-2 and qGY6-1), while co-localized QTLs for stomatal conductance and transpiration rate were identified on chr 7 (qg(s)7-1 and qTR7-1). We also attempted to identify the candidate genes responsible for the observed phenotypic variation; our analysis revealed that the major candidate genes associated with QTLs detected under water deficit conditions were related to growth and development, senescence, abscisic acid (ABA) signaling, signal transduction, and transporter activity in stress tolerance. The QTL regions identified in this study may be useful in designing markers that can be utilized in marker-assisted selection breeding. In addition, the putative candidate genes can be isolated and functionally characterized so that their role in imparting drought tolerance can be more fully understood.
引用
收藏
页数:16
相关论文
共 87 条
[1]   QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance [J].
Almeida, Gustavo Dias ;
Makumbi, Dan ;
Magorokosho, Cosmos ;
Nair, Sudha ;
Borem, Aluizio ;
Ribaut, Jean-Marcel ;
Baenziger, Marianne ;
Prasanna, Boddupalli M. ;
Crossa, Jose ;
Babu, Raman .
THEORETICAL AND APPLIED GENETICS, 2013, 126 (03) :583-600
[2]  
[Anonymous], 2008, The Concise Encyclopedia of Statistics, P283, DOI [DOI 10.1007/978-0-387-32833-1_214, DOI 10.1007/978-0-387-32833-1214]
[3]   Properties of sufficiency and statistical tests [J].
Bartlett, MS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 160 (A901) :0268-0282
[4]   IDENTIFICATION OF QUANTITATIVE TRAIT LOCI USING A SMALL SAMPLE OF TOPCROSSED AND F4 PROGENY FROM MAIZE [J].
BEAVIS, WD ;
SMITH, OS ;
GRANT, D ;
FINCHER, R .
CROP SCIENCE, 1994, 34 (04) :882-896
[5]   A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize [J].
Boer, Martin P. ;
Wright, Deanne ;
Feng, Lizhi ;
Podlich, Dean W. ;
Luo, Lang ;
Cooper, Mark ;
van Eeuwijk, Fred A. .
GENETICS, 2007, 177 (03) :1801-1813
[6]   TASSEL: software for association mapping of complex traits in diverse samples [J].
Bradbury, Peter J. ;
Zhang, Zhiwu ;
Kroon, Dallas E. ;
Casstevens, Terry M. ;
Ramdoss, Yogesh ;
Buckler, Edward S. .
BIOINFORMATICS, 2007, 23 (19) :2633-2635
[7]   Epistasis:: too often neglected in complex trait studies? [J].
Carlborg, Ö ;
Haley, CS .
NATURE REVIEWS GENETICS, 2004, 5 (08) :618-U4
[8]  
Cary N. C., 2011, SAS SYSTEM WINDOWS S
[9]  
Chen JunYi Chen JunYi, 2011, Frontiers of Agriculture in China, V5, P152, DOI 10.1007/s11703-011-1077-3
[10]   Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping [J].
Chen, Lin ;
An, Yixin ;
Li, Yong-Xiang ;
Li, Chunhui ;
Shi, Yunsu ;
Song, Yanchun ;
Zhang, Dengfeng ;
Wang, Tianyu ;
Li, Yu .
FRONTIERS IN PLANT SCIENCE, 2017, 8