Non-Intrusive Load Monitoring: A Review

被引:79
|
作者
Schirmer, Pascal A. [1 ,2 ]
Mporas, Iosif [1 ]
机构
[1] Univ Hertfordshire, Sch Engn & Comp Sci, Hatfield AL10 9AB, England
[2] BMW AG, Dept Power Elect, D-80809 Munich, Germany
关键词
Energy consumption; Load monitoring; Task analysis; Hidden Markov models; Taxonomy; Feature extraction; Smart grids; Energy disaggregation; non-intrusive load monitoring (NILM); smart meter; smart grid; ENERGY MANAGEMENT-SYSTEMS; IDENTIFICATION ALGORITHM; SOURCE SEPARATION; NEURAL-NETWORK; DISAGGREGATION; NILM; SIGNATURES; TRANSFORM; STATE;
D O I
10.1109/TSG.2022.3189598
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid development of technology in the electrical energy sector within the last 20 years has led to growing electric power needs through the increased number of electrical appliances and automation of tasks. In parallel the global climate protection goals, energy conservation and efficient energy management arise interest for reduction of the overall energy consumption. These requirements have led to the recent adoption of smart-meters and smart-grids, as well as to the rise of Load Monitoring (LM) using energy disaggregation, also referred to as Non-Intrusive Load Monitoring (NILM), which enables appliance-specific energy monitoring by only observing the aggregated energy consumption of a household. The real-time information on appliance level can be used to get deeper insights in the origin of energy consumption and to make optimization, strategic load scheduling and demand management feasible. The three main contributions are as follows: First, a generalized up-to-date review of NILM approaches including a high-level taxonomy of NILM methodologies is provided. Second, previously published results are grouped based on the experimental setup which allows direct comparison. Third, the article is accompanied by a software implementation of the described NILM approaches.
引用
收藏
页码:769 / 784
页数:16
相关论文
共 50 条
  • [21] A critical review of state-of-the-art non-intrusive load monitoring datasets
    Iqbal, Hafiz Khurram
    Malik, Farhan Hassan
    Muhammad, Aoun
    Qureshi, Muhammad Ali
    Abbasi, Muhammad Nawaz
    Chishti, Abdul Rehman
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 192
  • [22] Automatic Appliance Classification for Non-Intrusive Load Monitoring
    Chou, Po-An
    Chuang, Chi-Cheng
    Chang, Ray-I
    2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2012,
  • [23] Unsupervised Adaptive Non-Intrusive Load Monitoring System
    Chou, Po-An
    Chang, Ray-I
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 3180 - 3185
  • [24] Detecting the novel appliance in non-intrusive load monitoring
    Guo, Xiaochao
    Wang, Chao
    Wu, Tao
    Li, Ruiheng
    Zhu, Houyi
    Zhang, Huaiqing
    APPLIED ENERGY, 2023, 343
  • [25] A critical review of state-of-the-art non-intrusive load monitoring datasets
    Iqbal H.K.
    Malik F.H.
    Muhammad A.
    Qureshi M.A.
    Abbasi M.N.
    Chishti A.R.
    Electric Power Systems Research, 2021, 192
  • [26] Non-Intrusive Load Monitoring Using Current Shapelets
    Hasan, Md. Mehedi
    Chowdhury, Dhiman
    Khan, Md. Ziaur Rahman
    APPLIED SCIENCES-BASEL, 2019, 9 (24):
  • [27] ELECTRIcity: An Efficient Transformer for Non-Intrusive Load Monitoring
    Sykiotis, Stavros
    Kaselimi, Maria
    Doulamis, Anastasios
    Doulamis, Nikolaos
    SENSORS, 2022, 22 (08)
  • [28] Semi-Automatic Generation and Labeling of Training Data for Non-Intrusive Load Monitoring
    Voelker, Benjamin
    Scholl, Philipp M.
    Becker, Bernd
    E-ENERGY'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2019, : 17 - 23
  • [29] Device and Time Invariant Features for Transferable Non-Intrusive Load Monitoring
    Schirmer, Pascal A.
    Mporas, Iosif
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 121 - 130
  • [30] Efficient Supervised Machine Learning Network for Non-Intrusive Load Monitoring
    Hadi, Muhammad Usman
    Suhaimi, Nik Hazmi Nik
    Basit, Abdul
    TECHNOLOGIES, 2022, 10 (04)