Mouse Adapted SARS-CoV-2 (MA10) Viral Infection Induces Neuroinflammation in Standard Laboratory Mice

被引:18
作者
Amruta, Narayanappa [1 ]
Ismael, Saifudeen [1 ]
Leist, Sarah R. [2 ]
Gressett, Timothy E. [1 ,3 ]
Srivastava, Akhilesh [4 ]
Dinnon III, Kenneth H. [2 ]
Engler-Chiurazzi, Elizabeth B. [1 ,3 ,5 ]
Maness, Nicholas J. [6 ,7 ]
Qin, Xuebin [6 ,7 ]
Kolls, Jay K. [4 ]
Baric, Ralph S. [2 ]
Bix, Gregory [1 ,3 ,5 ,8 ]
机构
[1] Tulane Univ, Sch Med, Clin Neurosci Res Ctr, Dept Neurosurg, New Orleans, LA 70112 USA
[2] Univ N Carolina, Dept Epidemiol Microbiol & Immunol, Chapel Hill, NC 27599 USA
[3] Tulane Univ, Tulane Brain Inst, New Orleans, LA 70112 USA
[4] Tulane Univ, Ctr Translat Res Infect & Inflammat, Sch Med, New Orleans, LA 70112 USA
[5] Tulane Univ, Sch Med, Dept Neurol, New Orleans, LA 70112 USA
[6] Tulane Univ, Sch Med, Dept Microbiol & Immunol, New Orleans, LA 70112 USA
[7] Tulane Natl Primate Res Ctr, Covington, LA 70433 USA
[8] Tulane Univ, Sch Publ Hlth & Trop Med, New Orleans, LA 70122 USA
来源
VIRUSES-BASEL | 2023年 / 15卷 / 01期
关键词
animal models; brain; COVID-19; mouse-adaptation; neuroinflammation; SARS-CoV-2; BETA;
D O I
10.3390/v15010114
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Increasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology. Herein we show neuroinflammatory profiles of immunologically intact mice, C57BL/6J and BALB/c, as well as immunodeficient (Rag2(-/-)) mice, to a mouse-adapted strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 (MA10)). Our findings indicate that brain IL-6 levels are significantly higher in BALB/c male mice infected with SARS-CoV-2 MA10. Additionally, blood-brain barrier integrity, as measured by the vascular tight junction protein claudin-5, was reduced by SARS-CoV-2 MA10 infection in all three strains. Brain glial fibrillary acidic protein (GFAP) mRNA was also elevated in male C57BL/6J infected mice compared with the mock group. Lastly, immune-vascular effects of SARS-CoV-2 (MA10), as measured by H&E scores, demonstrate an increase in perivascular lymphocyte cuffing (PLC) at 30 days post-infection among infected female BALB/c mice with a significant increase in PLC over time only in SARS-CoV-2 MA10) infected mice. Our study is the first to demonstrate that SARS-CoV-2 (MA10) infection induces neuroinflammation in laboratory mice and could be used as a novel model to study SARS-CoV-2-mediated cerebrovascular pathology.
引用
收藏
页数:12
相关论文
共 33 条
[1]   In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice [J].
Amruta, Narayanappa ;
Engler-Chiurazzi, Elizabeth B. ;
Murray-Brown, Isabel C. ;
Gressett, Timothy E. ;
Biose, Ifechukwude J. ;
Chastain, Wesley H. ;
Befeler, Jaime B. ;
Bix, Gregory .
LIFE SCIENCES, 2021, 284
[2]   SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders [J].
Amruta, Narayanappa ;
Chastain, Wesley H. ;
Paz, Meshi ;
Solch, Rebecca J. ;
Murray-Brown, Isabel C. ;
Befeler, Jaime B. ;
Gressett, Timothy E. ;
Longo, Michele T. ;
Engler-Chiurazzi, Elizabeth B. ;
Bix, Gregory .
CYTOKINE & GROWTH FACTOR REVIEWS, 2021, 58 :1-15
[3]   Brain Invasion by Mouse Hepatitis Virus Depends on Impairment of Tight Junctions and Beta Interferon Production in Brain Microvascular Endothelial Cells [J].
Bleau, Christian ;
Filliol, Aveline ;
Samson, Michel ;
Lamontagne, Lucie .
JOURNAL OF VIROLOGY, 2015, 89 (19) :9896-9908
[4]   The blessings and curses of C57BL/6 substrains in mouse genetic studies [J].
Bryant, Camron D. .
ANIMAL MODELS: THEIR VALUE IN PREDICTING DRUG EFFICACY AND TOXICITY, 2011, 1245 :31-33
[5]   Experimental Models of COVID-19 [J].
Caldera-Crespo, Luis A. ;
Paidas, Michael J. ;
Roy, Sabita ;
Schulman, Carl I. ;
Kenyon, Norma Sue ;
Daunert, Sylvia ;
Jayakumar, Arumugam R. .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 11
[6]  
Carossino M., 2021, PREPRINT, DOI [10.1101/2021.01.13.425144, DOI 10.1101/2021.01.13.425144]
[7]   MONOCYTE CHEMOATTRACTANT PROTEIN-1 ACTS AS A T-LYMPHOCYTE CHEMOATTRACTANT [J].
CARR, MW ;
ROTH, SJ ;
LUTHER, E ;
ROSE, SS ;
SPRINGER, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (09) :3652-3656
[8]   C57BL/6J Mice Are Not Suitable for Modeling Severe SARS-CoV-2 Beta and Gamma Variant Infection [J].
Currey, Joshua M. ;
Rabito, Felix ;
Maness, Nicholas J. ;
Blair, Robert, V ;
Rappaport, Jay ;
Qin, Xuebin ;
Kolls, Jay K. ;
Srivastava, Akhilesh K. .
VIRUSES-BASEL, 2022, 14 (05)
[9]   A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures [J].
Dinnon, Kenneth H., III ;
Leist, Sarah R. ;
Schafer, Alexandra ;
Edwards, Caitlin E. ;
Martinez, David R. ;
Montgomery, Stephanie A. ;
West, Ande ;
Yount, Boyd L., Jr. ;
Hou, Yixuan J. ;
Adams, Lily E. ;
Gully, Kendra L. ;
Brown, Ariane J. ;
Huang, Emily ;
Bryant, Matthew D. ;
Choong, Ingrid C. ;
Glenn, Jeffrey S. ;
Gralinski, Lisa E. ;
Sheahan, Timothy P. ;
Baric, Ralph S. .
NATURE, 2020, 586 (7830) :560-+
[10]  
Dinnon KH., 2022, bioRxiv, DOI DOI 10.1101/2022.02.15.480515