Performance Evaluation of Torrefaction Coupled with a Chemical Looping Gasification Process under Autothermal Conditions: Flexible Production from Biomass

被引:7
|
作者
Liu, Gen [1 ]
Zhang, Rongjiang [1 ]
Zhang, Bo [1 ]
Liu, Jingjun [1 ]
Wu, Zhiqiang [1 ]
Wang, Ziliang [3 ,4 ,5 ]
Yang, Fu [2 ]
Yang, Bolun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Shaanxi Key Lab Energy Chem Proc Intensificat, Xian 710049, Shaanxi, Peoples R China
[2] Minist Nat & Resources, Shaanxi Prov Coal Geol Grp Co Ltd, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710026, Peoples R China
[3] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[4] Natl Engn Lab Reducing Emiss Coal Combust, Jinan 250061, Peoples R China
[5] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
基金
中国国家自然科学基金;
关键词
OXYGEN CARRIER; THERMODYNAMIC ANALYSIS; SYNGAS PRODUCTION; KINETIC-ANALYSIS; SPOUTED BED; IRON-ORE; ENERGY; COMBUSTION; TECHNOLOGY; SCALE;
D O I
10.1021/acs.energyfuels.2c03155
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Herein, a coupled biomass torrefaction and chemical looping gasification (BTCLG) process was proposed, and process simulations were performed under autothermal conditions. The effects of operational parameters on product distribution with torrefaction temperatures from 240 to 300 degrees C, gasification temperatures from 700 to 880 degrees C, and steam/biomass (S/B) ratios from 0.5 to 1.5 were explored. The results showed that the process could stably operate under autothermal conditions. Torrefaction increased the syngas yield, heating value, and cold gas efficiency by 12.44, 5.11, and 36.73%, respectively. Moreover, it reduced the bed material circulation rate required for autothermal operation by 59.03%. At the torrefaction temperature of 240 degrees C, the syngas yield reached a maximum value of 0.78 Nm3/kg. Increases in the gasification temperature also positively impacted syngas production. However, the optimal gasification temperature was 810 degrees C based on the bed material circulation rate constraint. The syngas H2/CO ratio could be flexibly adjusted from 1.62 to 3.34 by changing the S/B ratio to meet downstream demands. Overall, the simulation results support the technical viability and demonstrate the excellent performance of the BTCLG process compared to the biomass CLG process.
引用
收藏
页码:424 / 438
页数:15
相关论文
empty
未找到相关数据