Supramolecular Semiconductivity through Emerging Ionic Gates in Ion-Nanoparticle Superlattices

被引:17
作者
Lionello, Chiara [1 ]
Perego, Claudio [2 ]
Gardin, Andrea [1 ]
Klajn, Rafal [3 ]
Pavan, Giovanni M. [1 ,2 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, I-10129 Turin, Italy
[2] Univ Appl Sci & Arts Southern Switzerland, Polo Univ Lugano, Dept Innovat Technol, CH-6962 Lugano Viganello, Switzerland
[3] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel
基金
瑞士国家科学基金会;
关键词
colloidal superlattices; ion dynamics; supramolecular semiconductivity; ionic conductivity; molecular dynamics; coarse-graining; machine learning; COLLOIDAL NANOCRYSTALS; CATION-EXCHANGE; FORCE-FIELD; BINARY; DNA; NANOFIBERS; CLUSTERS; BEHAVIOR; MARTINI; ANALOGS;
D O I
10.1021/acsnano.2c07558
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals via mediation by citrate counterions. In silico ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the "band gap " requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice's cavities.
引用
收藏
页码:275 / 287
页数:13
相关论文
共 94 条
[1]   Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice [J].
Abelson, Alex ;
Qian, Caroline ;
Salk, Trenton ;
Luan, Zhongyue ;
Fu, Kan ;
Zheng, Jian-Guo ;
Wardini, Jenna L. ;
Law, Matt .
NATURE MATERIALS, 2020, 19 (01) :49-+
[2]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[3]   Assembling materials with DNA as the guide [J].
Aldaye, Faisal A. ;
Palmer, Alison L. ;
Sleiman, Hanadi F. .
SCIENCE, 2008, 321 (5897) :1795-1799
[4]   Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simblations with Implicit Solvent [J].
Arnarez, Clement ;
Uusitalo, Jaakko J. ;
Masman, Marcelo F. ;
Ingolfsson, Helgi I. ;
de Jong, Djurre H. ;
Melo, Manuel N. ;
Periole, Xavier ;
de Vries, Alex H. ;
Marrink, Siewert J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (01) :260-275
[5]   In situ functionalization of self-assembled dendrimer nanofibers with cadmium sulfide quantum dots through simple ionic-substitution [J].
Astachov, V. ;
Garzoni, M. ;
Danani, A. ;
Choy, K. -L. ;
Pavan, G. M. ;
Fahmi, A. .
NEW JOURNAL OF CHEMISTRY, 2016, 40 (07) :6325-6331
[6]   DNA-mediated nanoparticle crystallization into Wulff polyhedra [J].
Auyeung, Evelyn ;
Li, Ting I. N. G. ;
Senesi, Andrew J. ;
Schmucker, Abrin L. ;
Pals, Bridget C. ;
de la Cruz, Monica Olvera ;
Mirkin, Chad A. .
NATURE, 2014, 505 (7481) :73-77
[7]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts [J].
Bergeron, DE ;
Roach, PJ ;
Castleman, AW ;
Jones, N ;
Khanna, SN .
SCIENCE, 2005, 307 (5707) :231-235
[10]   Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures [J].
Bian, Tong ;
Gardin, Andrea ;
Gemen, Julius ;
Houben, Lothar ;
Perego, Claudio ;
Lee, Byeongdu ;
Elad, Nadav ;
Chu, Zonglin ;
Pavan, Giovanni M. ;
Klajn, Rafal .
NATURE CHEMISTRY, 2021, 13 (10) :940-+