Exploring indirect entity relations for knowledge graph enhanced recommender system

被引:8
作者
He, Zhonghai [1 ]
Hui, Bei [1 ]
Zhang, Shengming [1 ]
Xiao, Chunjing [2 ]
Zhong, Ting [1 ]
Zhou, Fan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[2] Henan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommender systems; Knowledge graph; Graph neural networks; Exposure bias; Data sparsity;
D O I
10.1016/j.eswa.2022.118984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph (KG)-based recommendation models generally explore auxiliary information to alleviate the sparsity and cold-start problems in recommender systems. Previous approaches enhance representations of users and items by exploring the influence of multi-hop neighbors. However, existing works fail to consider the indirect feedback for improving user representation and the diversity of the multi-hop neighbors for enriching item representation. To this end, we present a novel recommender system, called Entity Relation Similarity and Indirect Feedback-based Knowledge graph enhanced Recommendation (ERSIF-KR) to enhance representation learning in KG-based recommender systems. In addition, our model exploits indirect feedback of items that are not directly interacted with users to alleviate the exposure bias while enhancing user similarity computation when learning user representation. Moreover, our method directly incorporates representation of multi-hop neighbors into the target item embedding with weights determined by the correlations between high-order and low-order relations, which can significantly boost the item representation learning. Extensive experiments on three real-world datasets demonstrate that our model achieves remarkable gains in terms of recommendation performance and model convergence time, and effectively alleviates the sparsity and cold start problems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An entity graph based Recommender System
    Chaudhari, Sneha
    Azaria, Amos
    Mitchell, Tom
    AI COMMUNICATIONS, 2017, 30 (02) : 141 - 149
  • [2] KGIE: Knowledge graph convolutional network for recommender system with interactive embedding
    Li, Mingqi
    Ma, Wenming
    Chu, Zihao
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [3] Improving recommender system via knowledge graph based exploring user preference
    Fan, Huilian
    Zhong, Yuanchang
    Zeng, Guangpu
    Ge, Chenhao
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10032 - 10044
  • [4] Improving recommender system via knowledge graph based exploring user preference
    Huilian Fan
    Yuanchang Zhong
    Guangpu Zeng
    Chenhao Ge
    Applied Intelligence, 2022, 52 : 10032 - 10044
  • [5] Interactive Recommender System via Knowledge Graph-enhanced Reinforcement Learning
    Zhou, Sijin
    Dai, Xinyi
    Chen, Haokun
    Zhang, Weinan
    Ren, Kan
    Tang, Ruiming
    He, Xiuqiang
    Yu, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 179 - 188
  • [6] Exploring high-order user preference on the knowledge graph for recommender systems
    Wang H.
    Zhang F.
    Wang J.
    Zhao M.
    Li W.
    Xie X.
    Guo M.
    ACM Transactions on Information Systems, 2019, 37 (03):
  • [7] An attention mechanism and residual network based knowledge graph-enhanced recommender system
    Li, Weisheng
    Zhong, Hao
    Zhou, Junming
    Chang, Chao
    Lin, Ronghua
    Tang, Yong
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [8] RecKG: Knowledge Graph for Recommender Systems
    Kwon, Junhyuk
    Ahn, Seokho
    Seo, Young-Duk
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 600 - 607
  • [9] Knowledge Graph Convolutional Networks for Recommender Systems
    Wang, Hongwei
    Zhao, Miao
    Xie, Xing
    Li, Wenjie
    Guo, Minyi
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 3307 - 3313
  • [10] Improving Knowledge Graph Entity Alignment with Graph Augmentation
    Xie, Feng
    Zeng, Xiang
    Zhou, Bin
    Tan, Yusong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 : 3 - 14