ON THE EXCEPTIONAL ZEROS OF p-NON-ORDINARY p-ADIC L-FUNCTIONS AND A CONJECTURE OF PERRIN-RIOU

被引:1
作者
Benois, Denis [1 ]
Buyukboduk, Kazim [2 ]
机构
[1] Univ Bordeaux, Inst Math, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Coll Dublin, UCD Sch Math & Stat, Dublin, Ireland
基金
欧盟地平线“2020”;
关键词
p-adic height pairings; Selmer complexes; p-adic L-functions; IWASAWA THEORY; HEEGNER CYCLES; MODULAR-FORMS; FAMILIES; (PHI; REPRESENTATIONS; GAMMA)-MODULES; DERIVATIVES; COHOMOLOGY; HEIGHTS;
D O I
10.1090/tran/8704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our goal in this article is to prove a form of p-adic Birch and Swinnerton-Dyer formula for the second derivative of the p-adic L-function associated to a newform f which is non-crystalline semistable at p at its central critical point, by expressing this quantity in terms of a p-adic (cyclotomic) regulator defined on an extended trianguline Selmer group. We also prove a two-variable version of this result for height pairings we construct by considering infinitesimal deformations afforded by a Coleman family passing through f. This, among other things, leads us to a proof of an appropriate version of Perrin-Riou's conjecture in this set up.
引用
收藏
页码:231 / 284
页数:54
相关论文
共 52 条
[1]  
[Anonymous], 2010, Asterisque
[2]   Critical p-adic L-functions [J].
Bellaiche, Joel .
INVENTIONES MATHEMATICAE, 2012, 189 (01) :1-60
[3]  
BENOIS D., 2014, Contributions in Mathematical and Computational Sciences, V7, P65
[4]  
Benois D., 2010, Doc. Math., P5
[5]  
Benois D, 2008, COMMENT MATH HELV, V83, P603
[6]   Interpolation of Beilinson-Kato elements and p-adic L-functions [J].
Benois, Denis ;
Buyukboduk, Kazim .
ANNALES MATHEMATIQUES DU QUEBEC, 2022, 46 (02) :231-287
[7]   TRIVIAL ZEROS OF P-ADIC L-FUNCTIONS AT NEAR-CENTRAL POINTS [J].
Benois, Denis .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (03) :561-598
[8]   A GENERALIZATION OF GREENBERG'S L-INVARIANT [J].
Benois, Denis .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (06) :1573-1632
[9]  
Benois Denis, 2021, MEM SOC MATH FR, V167, pvi + 135, DOI [10.24033/msmf.47, DOI 10.24033/MSMF.47]
[10]  
Benois Denis, 2015, LONDON MATH SOC LECT, V420, P36