Multiresolution community detection in complex networks by using a decomposition based multiobjective memetic algorithm

被引:0
作者
Shao, Zengyang [1 ]
Ma, Lijia [1 ]
Bai, Yuan [2 ]
Wang, Shanfeng [3 ]
Lin, Qiuzhen [1 ]
Li, Jianqiang [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Univ Hong Kong, Li Ka Shing Fac Med, Sch Publ Hlth, WHO Collaborating Ctr Infect Dis Epidemiol & Cont, Hong Kong, Peoples R China
[3] Xidian Univ, Sch Elect Engn, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Multiobjective optimization; Memetic algorithm; Community detection; Multiresolution; Complex networks; EVOLUTIONARY ALGORITHM; GENETIC ALGORITHM; OPTIMIZATION; MODULARITY; RESOLUTION;
D O I
10.1007/s12293-022-00370-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Community structures are sets of nodes that are densely linked with each other, reflecting the functional modules of real-world systems. Most classical works for community detection (CD) are based on the optimization of an objective function, namely modularity. However, it has been recently demonstrated that there exists a resolution limit in the modularity optimization based CD methods, i.e., the communities cannot be detected if their scales are smaller than a certain threshold. To overcome this resolution limit, in this paper, we propose a decomposition based multiobjective memetic algorithm (called MDMCD) for multiresolution CD (MCD) in complex networks, aiming to detect communities at multiple resolution levels. MDMCD first models the MCD problem as a multiobjective optimization problem (MOP) with two contradictory objectives, namely the intra-link ratio and inter-link ratio. Then, it devises a multiobjective memetic optimization framework that combines a decomposition based multiobjective evolutionary algorithm with a two-level local search to solve the modeled MOP. In this framework, the modeled MOP is first decomposed into a set of single-objective optimization subproblems, each of which corresponds to a CD problem in a certain resolution level. Subsequently, these subproblems are simultaneously optimized by the evolutionary operators and the local search, taking the network-specific knowledge into consideration. Finally, MDMCD returns a population of solutions in a single simulation run, reflecting the community divisions at multiple resolution levels. Experiments on both the simulated and real-world networks show the effectiveness of MDMCD in detecting multiresolution community structures.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 63 条
[1]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[3]   Multi-objective optimization of community detection using discrete teaching-learning-based optimization with decomposition [J].
Chen, Debao ;
Zou, Feng ;
Lu, Renquan ;
Yu, Lei ;
Li, Zheng ;
Wang, Jiangtao .
INFORMATION SCIENCES, 2016, 369 :402-418
[4]   A Multi-Facet Survey on Memetic Computation [J].
Chen, Xianshun ;
Ong, Yew-Soon ;
Lim, Meng-Hiot ;
Tan, Kay Chen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (05) :591-607
[5]   A local information based multi-objective evolutionary algorithm for community detection in complex networks [J].
Cheng, Fan ;
Cui, Tingting ;
Su, Yansen ;
Niu, Yunyun ;
Zhang, Xingyi .
APPLIED SOFT COMPUTING, 2018, 69 :357-367
[6]  
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
[7]   Hierarchical structure and the prediction of missing links in networks [J].
Clauset, Aaron ;
Moore, Cristopher ;
Newman, M. E. J. .
NATURE, 2008, 453 (7191) :98-101
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   Resolution limit in community detection [J].
Fortunato, Santo ;
Barthelemy, Marc .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (01) :36-41
[10]   Community detection in graphs [J].
Fortunato, Santo .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5) :75-174