Understanding metric-related pitfalls in image analysis validation

被引:35
作者
Reinke, Annika [1 ,2 ,3 ]
Tizabi, Minu D. [1 ,4 ]
Baumgartner, Michael [5 ]
Eisenmann, Matthias [1 ]
Heckmann-Noetzel, Doreen [1 ,4 ]
Kavur, A. Emre [1 ,5 ,6 ]
Raedsch, Tim [1 ,2 ]
Sudre, Carole H. [7 ,8 ,9 ]
Acion, Laura [10 ]
Antonelli, Michela [9 ,11 ]
Arbel, Tal [12 ,13 ]
Bakas, Spyridon [14 ,15 ]
Benis, Arriel [16 ,17 ]
Buettner, Florian [18 ,19 ,20 ,21 ,22 ]
Cardoso, M. Jorge [9 ]
Cheplygina, Veronika [23 ]
Chen, Jianxu [24 ]
Christodoulou, Evangelia [1 ]
Cimini, Beth A. [25 ]
Farahani, Keyvan [26 ]
Ferrer, Luciana [27 ]
Galdran, Adrian [28 ,29 ]
van Ginneken, Bram [30 ,31 ]
Glocker, Ben [32 ]
Godau, Patrick [1 ,3 ,4 ]
Hashimoto, Daniel A. [33 ,34 ]
Hoffman, Michael M. [35 ,36 ,37 ,38 ]
Huisman, Merel [39 ]
Isensee, Fabian [5 ,6 ]
Jannin, Pierre [40 ,41 ]
Kahn, Charles E. [42 ,43 ]
Kainmueller, Dagmar [44 ,45 ,46 ]
Kainz, Bernhard [47 ,48 ]
Karargyris, Alexandros [49 ]
Kleesiek, Jens [50 ]
Kofler, Florian [51 ]
Kooi, Thijs [52 ]
Kopp-Schneider, Annette [53 ]
Kozubek, Michal [54 ,55 ]
Kreshuk, Anna [56 ]
Kurc, Tahsin [57 ]
Landman, Bennett A. [58 ]
Litjens, Geert [59 ]
Madani, Amin [60 ]
Maier-Hein, Klaus [5 ,61 ]
Martel, Anne L. [36 ,62 ]
Meijering, Erik [63 ]
Menze, Bjoern [64 ]
Moons, Karel G. M. [65 ]
Mueller, Henning [66 ,67 ]
机构
[1] German Canc Res Ctr DKFZ Heidelberg, Div Intelligent Med Syst, Heidelberg, Germany
[2] German Canc Res Ctr DKFZ Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany
[3] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[4] NCT Heidelberg, Natl Ctr Tumor Dis NCT, Heidelberg, Germany
[5] German Canc Res Ctr DKFZ Heidelberg, Div Med Image Comp, Heidelberg, Germany
[6] German Canc Res Ctr DKFZ Heidelberg, HI Appl Comp Vis Lab, Heidelberg, Germany
[7] UCL, MRC Unit Lifelong Hlth & Ageing, London, England
[8] UCL, Dept Comp Sci, Ctr Med Image Comp, London, England
[9] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[10] Univ Buenos Aires, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[11] UCL, Ctr Med Image Comp, London, England
[12] McGill Univ, Ctr Intelligent Machines, Montreal, PQ, Canada
[13] McGill Univ, MILA Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
[14] Indiana Univ Sch Med, Dept Pathol & Lab Med, Div Computat Pathol, Indianapolis, IN 46202 USA
[15] Univ Penn, Ctr Biomed Image Comp & Analyt CBICA, Philadelphia, PA 19104 USA
[16] Holon Inst Technol, Dept Digital Med Technol, Holon, Israel
[17] European Federat Med Informat, Le Mt Sur Lausanne, Switzerland
[18] German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Frankfurt, Germany
[19] German Canc Res Ctr DKFZ Heidelberg, Heidelberg, Germany
[20] Goethe Univ Frankfurt, Dept Med, Frankfurt, Germany
[21] Goethe Univ Frankfurt, Dept Informat, Frankfurt, Germany
[22] Frankfurt Canc Insititute, Frankfurt, Germany
[23] IT Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[24] Leibniz Inst Analyt Wissensch ISAS eV, Dortmund, Germany
[25] Broad Inst MIT & Harvard, Imaging Platform, Cambridge, MA 02142 USA
[26] NCI, Ctr Biomed Informat & Informat Technol, Bethesda, MD 20892 USA
[27] UBA, CONICET, Inst Invest Ciencias Computac ICC, Buenos Aires, DF, Argentina
[28] Univ Pompeu Fabra, Barcelona, Spain
[29] Univ Adelaide, Adelaide, SA, Australia
[30] Fraunhofer MEVIS, Bremen, Germany
[31] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Hlth Sci, Nijmegen, Netherlands
[32] Imperial Coll London, Dept Comp, South Kensington Campus, London, England
[33] Perelman Sch Med, Dept Surg, Philadelphia, PA USA
[34] Univ Penn, Sch Engn & Appl Sci, Gen Robot Automat Sensing & Percept Lab, Philadelphia, PA 19104 USA
[35] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[36] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[37] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[38] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[39] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[40] Univ Rennes 1, Lab Traitement Signal & Image, UMR S 1099, Rennes, France
[41] INSERM, Paris, France
[42] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[43] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
[44] Max Delbruck Ctr Mol Med, Helmholtz Assoc MDC, Biomed Image Anal, Berlin, Germany
[45] HI Helmholtz Imaging, Berlin, Germany
[46] Univ Potsdam, Digital Engn Fac, Potsdam, Germany
[47] Imperial Coll London, Fac Engn, Dept Comp, London, England
[48] Friedrich Alexander Univ, Dept AIBE, Erlangen, Germany
[49] IHU Strasbourg, Strasbourg, France
[50] Univ Med Essen, Inst AI Med IKIM, Translat Image Guided Oncol TIO, Essen, Germany
基金
芬兰科学院; 瑞士国家科学基金会; 加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; “创新英国”项目; 美国国家卫生研究院; 欧洲研究理事会; 英国惠康基金; 荷兰研究理事会;
关键词
SEGMENTATION;
D O I
10.1038/s41592-023-02150-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation. This Perspective presents a reliable and comprehensive source of information on pitfalls related to validation metrics in image analysis, with an emphasis on biomedical imaging.
引用
收藏
页码:182 / 194
页数:20
相关论文
共 38 条
  • [1] The Liver Tumor Segmentation Benchmark (LiTS)
    Bilic, Patrick
    Christ, Patrick
    Li, Hongwei Bran
    Vorontsov, Eugene
    Ben-Cohen, Avi
    Kaissis, Georgios
    Szeskin, Adi
    Jacobs, Colin
    Mamani, Gabriel Efrain Humpire
    Chartrand, Gabriel
    Lohoefer, Fabian
    Holch, Julian Walter
    Sommer, Wieland
    Hofmann, Felix
    Hostettler, Alexandre
    Lev-Cohain, Naama
    Drozdzal, Michal
    Amitai, Michal Marianne
    Vivanti, Refael
    Sosna, Jacob
    Ezhov, Ivan
    Sekuboyina, Anjany
    Navarro, Fernando
    Kofler, Florian
    Paetzold, Johannes C.
    Shit, Suprosanna
    Hu, Xiaobin
    Lipkova, Jana
    Rempfler, Markus
    Piraud, Marie
    Kirschke, Jan
    Wiestler, Benedikt
    Zhang, Zhiheng
    Huelsemeyer, Christian
    Beetz, Marcel
    Ettlinger, Florian
    Antonelli, Michela
    Bae, Woong
    Bellver, Miriam
    Bi, Lei
    Chen, Hao
    Chlebus, Grzegorz
    Dam, Erik B.
    Dou, Qi
    Fu, Chi-Wing
    Georgescu, Bogdan
    Giro-I-Nieto, Xavier
    Gruen, Felix
    Han, Xu
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 84
  • [2] Brown B., 1968, P-3925
  • [3] Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads:: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads
    Carbonell, Alberto
    De la Pena, Marcos
    Flores, Ricardo
    Gago, Selma
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 (19) : 5613 - 5622
  • [4] Chen J., 2020, bioRxiv, DOI DOI 10.1101/491035
  • [5] The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
    Chicco, Davide
    Totsch, Niklas
    Jurman, Giuseppe
    [J]. BIODATA MINING, 2021, 14 (01) : 1 - 22
  • [6] The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
    Chicco, Davide
    Jurman, Giuseppe
    [J]. BMC GENOMICS, 2020, 21 (01)
  • [7] Cordts M., 2015, CVPR WORKSH FUT DAT, V2
  • [8] Correia Paulo, 2006, EURASIP Journal on Advances in Signal Processing, V2006, P1
  • [9] Nonceliac Gluten Sensitivity: Sense or Sensibility?
    Di Sabatino, Antonio
    Corazza, Gino Roberto
    [J]. ANNALS OF INTERNAL MEDICINE, 2012, 156 (04) : 309 - U101
  • [10] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338