Discrete-time nonlinear feedback linearization via physics-informed machine learning

被引:4
作者
Alvarez, Hector Vargas [1 ]
Fabiani, Gianluca [1 ,4 ]
Kazantzis, Nikolaos [2 ]
Siettos, Constantinos [3 ]
Kevrekidis, Ioannis G. [4 ,5 ,6 ]
机构
[1] Scuola Super Meridionale, Naples, Italy
[2] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA USA
[3] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppoli, Naples, Italy
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[6] Johns Hopkins Univ, Med Sch, Dept Urol, Baltimore, MD USA
关键词
Physics-informed machine learning; Feedback linearization; Nonlinear discrete time systems; Greedy training; NEURAL-NETWORKS; GEOMETRIC METHODS; ADAPTIVE-CONTROL; FUZZY CONTROL; STATE-SPACE; SYSTEMS; STABILIZATION; APPROXIMATE; STRATEGIES; IMMERSION;
D O I
10.1016/j.jcp.2023.112408
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a physics-informed machine learning (PIML) scheme for the feedback linearization of nonlinear discrete-time dynamical systems. The PIML finds the nonlinear transformation law, thus ensuring stability via pole placement, in one step. In order to facilitate convergence in the presence of steep gradients in the nonlinear transformation law, we address a greedy training procedure. We assess the performance of the proposed PIML approach via a benchmark nonlinear discrete map for which the feedback linearization transformation law can be derived analytically; the example is characterized by steep gradients, due to the presence of singularities, in the domain of interest. We show that the proposed PIML outperforms, in terms of numerical approximation accuracy, the traditional numerical implementation, which involves the construction -and the solution in terms of the coefficients of a power-series expansion-of a system of homological equations as well as the implementation of the PIML in the entire domain, thus highlighting the importance of continuation techniques in the training procedure of PIML schemes.(c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Parameter Estimation of Power Electronic Converters With Physics-Informed Machine Learning
    Zhao, Shuai
    Peng, Yingzhou
    Zhang, Yi
    Wang, Huai
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 11567 - 11578
  • [22] Intelligent modeling with physics-informed machine learning for petroleum engineering problems
    Xie, Chiyu
    Du, Shuyi
    Wang, Jiulong
    Lao, Junming
    Song, Hongqing
    ADVANCES IN GEO-ENERGY RESEARCH, 2023, 8 (02): : 71 - 75
  • [23] A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning
    Liu, Yanan
    Li, Hongliang
    Jin, Jian-Ming
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2024, 9 : 157 - 165
  • [24] Physics-Informed Online Machine Learning and Predictive Control of Nonlinear Processes with Parameter Uncertainty
    Zheng, Yingzhe
    Wu, Zhe
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (06) : 2804 - 2818
  • [25] Physics-informed machine learning: case studies for weather and climate modelling
    Kashinath, K.
    Mustafa, M.
    Albert, A.
    Wu, J-L.
    Jiang, C.
    Esmaeilzadeh, S.
    Azizzadenesheli, K.
    Wang, R.
    Chattopadhyay, A.
    Singh, A.
    Manepalli, A.
    Chirila, D.
    Yu, R.
    Walters, R.
    White, B.
    Xiao, H.
    Tchelepi, H. A.
    Marcus, P.
    Anandkumar, A.
    Hassanzadeh, P.
    Prabhat
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [26] Linearization of discrete-time systems
    ArandaBricaire, E
    Kotta, U
    Moog, CH
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (06) : 1999 - 2023
  • [27] Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems
    Deng, Hua
    Li, Han-Xiong
    Wu, Yi-Hu
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (09): : 1615 - 1625
  • [28] Linearization of discrete-time systems by exogenous dynamic feedback
    Aranda-Bricaire, Eduardo
    Moog, Claude H.
    AUTOMATICA, 2008, 44 (07) : 1707 - 1717
  • [29] A New Discrete-Time Linearization Feedback Law for Scalar Riccati Systems
    Triet Nguyen-Van
    Hori, Noriyuki
    2013 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2013, : 2560 - 2565
  • [30] A Discrete-time Linearization Feedback Control for the Van der Pol Oscillator
    Oshima, Tatsuya
    Kawai, Shin
    Nguyen-Van, Triet
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 574 - 579