Discrete-time nonlinear feedback linearization via physics-informed machine learning

被引:6
作者
Alvarez, Hector Vargas [1 ]
Fabiani, Gianluca [1 ,4 ]
Kazantzis, Nikolaos [2 ]
Siettos, Constantinos [3 ]
Kevrekidis, Ioannis G. [4 ,5 ,6 ]
机构
[1] Scuola Super Meridionale, Naples, Italy
[2] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA USA
[3] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppoli, Naples, Italy
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[6] Johns Hopkins Univ, Med Sch, Dept Urol, Baltimore, MD USA
关键词
Physics-informed machine learning; Feedback linearization; Nonlinear discrete time systems; Greedy training; NEURAL-NETWORKS; GEOMETRIC METHODS; ADAPTIVE-CONTROL; FUZZY CONTROL; STATE-SPACE; SYSTEMS; STABILIZATION; APPROXIMATE; STRATEGIES; IMMERSION;
D O I
10.1016/j.jcp.2023.112408
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a physics-informed machine learning (PIML) scheme for the feedback linearization of nonlinear discrete-time dynamical systems. The PIML finds the nonlinear transformation law, thus ensuring stability via pole placement, in one step. In order to facilitate convergence in the presence of steep gradients in the nonlinear transformation law, we address a greedy training procedure. We assess the performance of the proposed PIML approach via a benchmark nonlinear discrete map for which the feedback linearization transformation law can be derived analytically; the example is characterized by steep gradients, due to the presence of singularities, in the domain of interest. We show that the proposed PIML outperforms, in terms of numerical approximation accuracy, the traditional numerical implementation, which involves the construction -and the solution in terms of the coefficients of a power-series expansion-of a system of homological equations as well as the implementation of the PIML in the entire domain, thus highlighting the importance of continuation techniques in the training procedure of PIML schemes.(c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:21
相关论文
共 50 条
[21]   Physics-Informed Extreme Learning Machine Lyapunov Functions [J].
Zhou, Ruikun ;
Fitzsimmons, Maxwell ;
Meng, Yiming ;
Liu, Jun .
IEEE CONTROL SYSTEMS LETTERS, 2024, 8 :1763-1768
[22]   Physics-Informed Machine Learning for Optical Modes in Composites [J].
Ghosh, Abantika ;
Elhamod, Mohannad ;
Bu, Jie ;
Lee, Wei-Cheng ;
Karpatne, Anuj ;
Podolskiy, Viktor A. .
ADVANCED PHOTONICS RESEARCH, 2022, 3 (11)
[23]   Physics-informed machine learning for programmable photonic circuits [J].
Teofilovic, Isidora ;
Zibar, Darko ;
Da Ros, Francesco .
MACHINE LEARNING IN PHOTONICS, 2024, 13017
[24]   Physics-Informed Machine Learning for metal additive manufacturing [J].
Farrag, Abdelrahman ;
Yang, Yuxin ;
Cao, Nieqing ;
Won, Daehan ;
Jin, Yu .
PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) :171-185
[25]   Linearization of discrete-time systems [J].
ArandaBricaire, E ;
Kotta, U ;
Moog, CH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (06) :1999-2023
[26]   Linearization of discrete-time systems by exogenous dynamic feedback [J].
Aranda-Bricaire, Eduardo ;
Moog, Claude H. .
AUTOMATICA, 2008, 44 (07) :1707-1717
[27]   Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems [J].
Deng, Hua ;
Li, Han-Xiong ;
Wu, Yi-Hu .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (09) :1615-1625
[28]   Physics-informed machine learning: case studies for weather and climate modelling [J].
Kashinath, K. ;
Mustafa, M. ;
Albert, A. ;
Wu, J-L. ;
Jiang, C. ;
Esmaeilzadeh, S. ;
Azizzadenesheli, K. ;
Wang, R. ;
Chattopadhyay, A. ;
Singh, A. ;
Manepalli, A. ;
Chirila, D. ;
Yu, R. ;
Walters, R. ;
White, B. ;
Xiao, H. ;
Tchelepi, H. A. ;
Marcus, P. ;
Anandkumar, A. ;
Hassanzadeh, P. ;
Prabhat .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194)
[29]   Parameter Estimation of Power Electronic Converters With Physics-Informed Machine Learning [J].
Zhao, Shuai ;
Peng, Yingzhou ;
Zhang, Yi ;
Wang, Huai .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) :11567-11578
[30]   Physics-Informed Online Machine Learning and Predictive Control of Nonlinear Processes with Parameter Uncertainty [J].
Zheng, Yingzhe ;
Wu, Zhe .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (06) :2804-2818