Black hole perturbation theory and multiple polylogarithms

被引:23
作者
Aminov, Gleb [1 ,2 ]
Arnaudo, Paolo [3 ,4 ,5 ]
Bonelli, Giulio [3 ,4 ,5 ]
Grassi, Alba [6 ,7 ]
Tanzini, Alessandro [3 ,4 ,5 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, 100 Nicolls Rd, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Simons Ctr Geometry & Phys, 100 Nicolls Rd, Stony Brook, NY 11794 USA
[3] Int Sch Adv Studies SISSA, via Bonomea 265, I-34136 Trieste, Italy
[4] INFN Sez Trieste, via Valerio 2, I-34127 Trieste, Italy
[5] Inst Geometry & Phys IGAP, via Beirut 2, I-34151 Trieste, Italy
[6] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
[7] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
关键词
Black Holes; Classical Theories of Gravity; Supersymmetric Gauge Theory; Holography and Hydrodynamics; EQUATION; OPERS;
D O I
10.1007/JHEP11(2023)059
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study black hole linear perturbation theory in a four-dimensional Schwarzschild (anti) de Sitter background. When dealing with a positive cosmological constant, the corresponding spectral problem is solved systematically via the Nekrasov-Shatashvili functions or, equivalently, classical Virasoro conformal blocks. However, this approach can be more complicated to implement for certain perturbations if the cosmological constant is negative. For these cases, we propose an alternative method to set up perturbation theory for both small and large black holes in an analytical manner. Our analysis reveals a new underlying recursive structure that involves multiple polylogarithms. We focus on gravitational, electromagnetic, and conformally coupled scalar perturbations subject to Dirichlet and Robin boundary conditions. The low-lying modes of the scalar sector of gravitational perturbations and its hydrodynamic limit are studied in detail.
引用
收藏
页数:61
相关论文
共 145 条
[51]   CFT description of BH's and ECO's: QNMs, superradiance, echoes and tidal responses [J].
Consoli, Dario ;
Fucito, Francesco ;
Morales, Jose Francisco ;
Poghossian, Rubik .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)
[52]  
da Cunha B.C., arXiv
[53]   Teukolsky master equation and Painleve transcendents: Numerics and extremal limit [J].
da Cunha, Bruno Carneiro ;
Cavalcante, Joao Paulo .
PHYSICAL REVIEW D, 2021, 104 (08)
[54]   Probing horizon scale quantum effects with Love [J].
Datta, Sayak .
CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (22)
[55]   Nonlinearities in the tidal Love numbers of black holes [J].
De Luca, Valerio ;
Khoury, Justin ;
Wong, Sam S. C. .
PHYSICAL REVIEW D, 2023, 108 (02)
[56]  
Di Vecchia P, 2021, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2021)169
[57]   Boundary conditions for Kerr-AdS perturbations [J].
Dias, Oscar J. C. ;
Santos, Jorge E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10)
[58]  
Dodelson M., arXiv
[59]   Holographic thermal correlators from supersymmetric instantons [J].
Dodelson, Matthew ;
Grassi, Alba ;
Iossa, Cristoforo ;
Lichtig, Daniel Panea ;
Zhiboedov, Alexander .
SCIPOST PHYSICS, 2023, 14 (05)
[60]   Gravitational orbits, double-twist mirage, and many-body scars [J].
Dodelson, Matthew ;
Zhiboedov, Alexander .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)