Black hole perturbation theory and multiple polylogarithms

被引:23
作者
Aminov, Gleb [1 ,2 ]
Arnaudo, Paolo [3 ,4 ,5 ]
Bonelli, Giulio [3 ,4 ,5 ]
Grassi, Alba [6 ,7 ]
Tanzini, Alessandro [3 ,4 ,5 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, 100 Nicolls Rd, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Simons Ctr Geometry & Phys, 100 Nicolls Rd, Stony Brook, NY 11794 USA
[3] Int Sch Adv Studies SISSA, via Bonomea 265, I-34136 Trieste, Italy
[4] INFN Sez Trieste, via Valerio 2, I-34127 Trieste, Italy
[5] Inst Geometry & Phys IGAP, via Beirut 2, I-34151 Trieste, Italy
[6] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
[7] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
关键词
Black Holes; Classical Theories of Gravity; Supersymmetric Gauge Theory; Holography and Hydrodynamics; EQUATION; OPERS;
D O I
10.1007/JHEP11(2023)059
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study black hole linear perturbation theory in a four-dimensional Schwarzschild (anti) de Sitter background. When dealing with a positive cosmological constant, the corresponding spectral problem is solved systematically via the Nekrasov-Shatashvili functions or, equivalently, classical Virasoro conformal blocks. However, this approach can be more complicated to implement for certain perturbations if the cosmological constant is negative. For these cases, we propose an alternative method to set up perturbation theory for both small and large black holes in an analytical manner. Our analysis reveals a new underlying recursive structure that involves multiple polylogarithms. We focus on gravitational, electromagnetic, and conformally coupled scalar perturbations subject to Dirichlet and Robin boundary conditions. The low-lying modes of the scalar sector of gravitational perturbations and its hydrodynamic limit are studied in detail.
引用
收藏
页数:61
相关论文
共 145 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]   Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms [J].
Ablinger, Jakob ;
Bluemlein, Johannes ;
Schneider, Carsten .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
[3]   Exact scalar (quasi-)normal modes of black holes and solitons in gauged SUGRA [J].
Aguayo, Monserrat ;
Hernandez, Ankai ;
Mena, Jose ;
Oliva, Julio ;
Oyarzo, Marcelo .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
[4]  
Alday L.F., 2023, Phys. Rev. Lett., V131
[5]   The AdS Virasoro-Shapiro amplitude [J].
Alday, Luis F. ;
Hansen, Tobias .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (10)
[6]   AdS Virasoro-Shapiro from single-valued periods [J].
Alday, Luis F. F. ;
Hansen, Tobias ;
Silva, Joao A. A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)
[7]   Toward the pole [J].
Alekseev, S. ;
Gorsky, A. ;
Litvinov, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
[8]   Quasinormal modes of scalar fields on small Reissner-Nordstrom-AdS5 black holes [J].
Amado, Julian Barragan ;
da Cunha, Bruno Carneiro ;
Pallante, Elisabetta .
PHYSICAL REVIEW D, 2022, 105 (04)
[9]   Remarks on holographic models of the Kerr-AdS5 geometry [J].
Amado, Julian Barragan ;
da Cunha, Bruno Carneiro ;
Pallante, Elisabetta .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[10]   Vector perturbations of Kerr-AdS5 and the Painleve VI transcendent [J].
Amado, Julian Barragan ;
da Cunha, Bruno Carneiro ;
Pallante, Elisabetta .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)