Finite-difference time-domain methods

被引:40
|
作者
Teixeira, F. L. [1 ]
Sarris, C. [2 ]
Zhang, Y. [3 ]
Na, D. -Y. [4 ]
Berenger, J. -P. [5 ]
Su, Y. [6 ]
Okoniewski, M. [7 ]
Chew, W. C. [8 ]
Backman, V. [6 ]
Simpson, J. J. [3 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH USA
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[3] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
[4] Pohang Univ Sci & Technol, Dept Elect Engn, Pohang, South Korea
[5] Univ Manchester, Dept Elect & Elect Engn, Manchester, England
[6] Northwestern Univ, Biomed Engn Dept, Evanston, IL USA
[7] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[8] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN USA
来源
NATURE REVIEWS METHODS PRIMERS | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ELECTROMAGNETIC-WAVE PROPAGATION; PERFECTLY MATCHED LAYER; VLF-LF PROPAGATION; FDTD METHOD; MAXWELLS EQUATIONS; QUANTUM ELECTROMAGNETICS; SUBGRIDDING ALGORITHM; PLASMONIC STRUCTURES; NEGATIVE REFRACTION; MAGNETIZED FERRITES;
D O I
10.1038/s43586-023-00257-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The finite-difference time-domain (FDTD) method is a widespread numerical tool for full-wave analysis of electromagnetic fields in complex media and for detailed geometries. Applications of the FDTD method cover a range of time and spatial scales, extending from subatomic to galactic lengths and from classical to quantum physics. Technology areas that benefit from the FDTD method include biomedicine - bioimaging, biophotonics, bioelectronics and biosensors; geophysics - remote sensing, communications, space weather hazards and geolocation; metamaterials - sub-wavelength focusing lenses, electromagnetic cloaks and continuously scanning leaky-wave antennas; optics - diffractive optical elements, photonic bandgap structures, photonic crystal waveguides and ring-resonator devices; plasmonics - plasmonic waveguides and antennas; and quantum applications - quantum devices and quantum radar. This Primer summarizes the main features of the FDTD method, along with key extensions that enable accurate solutions to be obtained for different research questions. Additionally, hardware considerations are discussed, plus examples of how to extract magnitude and phase data, Brillouin diagrams and scattering parameters from the output of an FDTD model. The Primer ends with a discussion of ongoing challenges and opportunities to further enhance the FDTD method for current and future applications. Time-domain solutions to Maxwell's equations can be computed using the finite-difference time-domain (FDTD) method. This Primer explores how FDTD can be used to study electromagnetic fields in complex media, including a summary of FDTD models, extensions, outputs and applications across the electromagnetic spectrum.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [2] Stability of symplectic finite-difference time-domain methods
    Saitoh, I
    Takahashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 665 - 668
  • [3] Two Finite-Difference Time-Domain Methods Incorporated with Memristor
    Yang, Zaifeng
    Tan, Eng Leong
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2015, 42 : 153 - 158
  • [4] Unconditionally stable finite-difference time-domain methods and their applications
    Chen, ZZ
    2004 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS AND ITS APPLICATIONS, PROCEEDINGS, 2004, : PS13 - PS16
  • [5] Quantification of the truncation errors in finite-difference time-domain methods
    Sun, G
    Trueman, CW
    CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 1421 - 1424
  • [6] CONFORMAL HYBRID FINITE-DIFFERENCE TIME-DOMAIN AND FINITE-VOLUME TIME-DOMAIN
    YEE, KS
    CHEN, JS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (10) : 1450 - 1454
  • [7] Least Squares Finite-Difference Time-Domain
    de Oliveira, Rodrigo M. S.
    Paiva, Rodrigo R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6111 - 6115
  • [8] Refractive index adaptive gridding for finite-difference time-domain methods
    Körner, TO
    Fichtner, W
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1999, 12 (1-2) : 143 - 155
  • [9] Refractive index adaptive gridding for finite-difference time-domain methods
    Integrated Systems Laboratory, ETH Zentrum, Swiss Fed. Institute of Technology, 8092 Zürich, Switzerland
    Int J Numer Modell Electron Networks Devices Fields, 1 (143-155):
  • [10] Finite-difference and pseudospectral time-domain methods for subsurface radar applications
    Liu, QH
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 990 - 993