Aerosol Optical Properties and Type Retrieval via Machine Learning and an All-Sky Imager

被引:3
作者
Logothetis, Stavros-Andreas [1 ]
Giannaklis, Christos-Panagiotis [1 ]
Salamalikis, Vasileios [2 ]
Tzoumanikas, Panagiotis [1 ]
Raptis, Panagiotis-Ioannis [3 ]
Amiridis, Vassilis [4 ]
Eleftheratos, Kostas [3 ,5 ]
Kazantzidis, Andreas [1 ]
机构
[1] Univ Patras, Phys Dept, Lab Atmospher Phys, GR-26500 Patras, Greece
[2] NILU Norwegian Inst Air Res, POB 100, N-2027 Kjeller, Norway
[3] Natl Kapodistrian Univ Athens, Dept Geol & Geoenvironm, GR-15784 Athens, Greece
[4] Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sens, GR-15236 Athens, Greece
[5] Biomed Res Fdn Acad Athens, Ctr Environm Effects Hlth, GR-11527 Athens, Greece
关键词
all-sky imager; aerosol properties; AERONET; machine learning; aerosol type classification; SOLAR IRRADIANCE; CLOUD DETECTION; INVERSION ALGORITHM; GLOBAL IRRADIANCE; TECHNICAL NOTE; AERONET; DEPTH; CLASSIFICATION; VARIABILITY; VALIDATION;
D O I
10.3390/atmos14081266
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates the applicability of using the sky information from an all-sky imager (ASI) to retrieve aerosol optical properties and type. Sky information from the ASI, in terms of Red-Green-Blue (RGB) channels and sun saturation area, are imported into a supervised machine learning algorithm for estimating five different aerosol optical properties related to aerosol burden (aerosol optical depth, AOD at 440, 500 and 675 nm) and size (Angstrom Exponent at 440-675 nm, and Fine Mode Fraction at 500 nm). The retrieved aerosol optical properties are compared against reference measurements from the AERONET station, showing adequate agreement (R: 0.89-0.95). The AOD errors increased for higher AOD values, whereas for AE and FMF, the biases increased for coarse particles. Regarding aerosol type classification, the retrieved properties can capture 77.5% of the total aerosol type cases, with excellent results for dust identification (>95% of the cases). The results of this work promote ASI as a valuable tool for aerosol optical properties and type retrieval.
引用
收藏
页数:19
相关论文
共 86 条
[41]   Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network [J].
Kahn, Ralph A. ;
Gaitley, Barbara J. ;
Garay, Michael J. ;
Diner, David J. ;
Eck, Thomas F. ;
Smirnov, Alexander ;
Holben, Brent N. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[42]   Sky image-based solar irradiance prediction methodologies using artificial neural networks [J].
Kamadinata, Jane Oktavia ;
Ken, Tan Lit ;
Suwa, Tohru .
RENEWABLE ENERGY, 2019, 134 :837-845
[43]   A satellite view of aerosols in the climate system [J].
Kaufman, YJ ;
Tanré, D ;
Boucher, O .
NATURE, 2002, 419 (6903) :215-223
[44]   Cloud detection and classification with the use of whole-sky ground-based images [J].
Kazantzidis, A. ;
Tzoumanikas, P. ;
Bais, A. F. ;
Fotopoulos, S. ;
Economou, G. .
ATMOSPHERIC RESEARCH, 2012, 113 :80-88
[45]   Application of Simple All-sky Imagers for the Estimation of Aerosol Optical Depth [J].
Kazantzidis, Andreas ;
Tzoumanikas, Panagiotis ;
Nikitidou, Efterpi ;
Salamalikis, Vasileios ;
Wilbert, Stefan ;
Prahl, Christoph .
INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2016), 2017, 1850
[46]  
Ke GL, 2017, ADV NEUR IN, V30
[47]  
King MD, 1999, B AM METEOROL SOC, V80, P2229, DOI 10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO
[48]  
2
[49]   Validation of an all-sky imager-based nowcasting system for industrial PV plants [J].
Kuhn, Pascal ;
Nouri, Bijan ;
Wilbert, Stefan ;
Prahl, Christoph ;
Kozonek, Nora ;
Schmidt, Thomas ;
Yasser, Zeyad ;
Ramirez, Lourdes ;
Zarzalejo, Luis ;
Meyer, Angela ;
Vuilleumier, Laurent ;
Heinemann, Detlev ;
Blanc, Philippe ;
Pitz-Paal, Robert .
PROGRESS IN PHOTOVOLTAICS, 2018, 26 (08) :608-621
[50]   Characteristics of aerosol types from AERONET sunphotometer measurements [J].
Lee, J. ;
Kim, J. ;
Song, C. H. ;
Kim, S. B. ;
Chun, Y. ;
Sohn, B. J. ;
Holben, B. N. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (26) :3110-3117