Cavity-enhanced and temporally multiplexed atom-photon entanglement interface

被引:4
|
作者
Liu, Hailong [1 ,2 ]
Wang, Minjie [1 ,2 ]
Jiao, Haole [1 ,2 ]
Lu, Jiajin [1 ,2 ]
Fan, Wenxin [1 ,2 ]
Li, Shujing [1 ,2 ]
Wang, Hai [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT-MATTER INTERFACE; QUANTUM MEMORY; STORAGE; EFFICIENT; RETRIEVAL; COMMUNICATION; REPEATERS; ENSEMBLES;
D O I
10.1364/OE.483444
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Practical realization of quantum repeaters requires quantum memories with high retrieval efficiency, multi-mode storage capacities, and long lifetimes. Here, we report a high-retrieval-efficiency and temporally multiplexed atom-photon entanglement source. A train of 12 write pulses in time is applied to a cold atomic ensemble along different directions, which generates temporally multiplexed pairs of Stokes photons and spin waves via Duan-Lukin-Cirac-Zoller processes. The two arms of a polarization interferometer are used to encode photonic qubits of 12 Stokes temporal modes. The multiplexed spin-wave qubits, each of which is entangled with one Stokes qubit, are stored in a "clock" coherence. A ring cavity that resonates simultaneously with the two arms of the interferometer is used to enhance retrieval from the spin-wave qubits, with the intrinsic retrieval efficiency reaching 70.4%. The multiplexed source gives rise to a similar to 12.1-fold increase in atom-photon entanglement-generation probability compared to the single-mode source. The measured Bell parameter for the multiplexed atom-photon entanglement is 2.21(2), along with a memory lifetime of up to similar to 125 mu s. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:7200 / 7211
页数:12
相关论文
共 50 条
  • [31] Enhanced-generation of atom-photon entanglement by using FPGA-based feedback protocol
    Tian, Long
    Xu, Zhongxiao
    Li, Shujing
    Zheng, Yaohui
    Wen, Yafei
    Wang, Hai
    OPTICS EXPRESS, 2018, 26 (16): : 20160 - 20173
  • [32] Cavity-enhanced Ramsey spectroscopy at a Rydberg-atom-superconducting-circuit interface
    Walker, D. M.
    Morgan, A. A.
    Hogan, S. D.
    APPLIED PHYSICS LETTERS, 2020, 117 (20)
  • [33] Geometrically asymmetric optical cavity for strong atom-photon coupling
    Kawasaki, Akio
    Braverman, Boris
    Pedrozo-Penafiel, Edwin
    Shu, Chi
    Colombo, Simone
    Li, Zeyang
    Ozel, Ozge
    Chen, Wenlan
    Salvi, Leonardo
    Heinz, Andre
    Levonian, David
    Akamatsu, Daisuke
    Xiao, Yanhong
    Vuletic, Vladan
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [34] Atom-Photon Thermal Entanglement in Nonlinear Jaynes-Cummings Models
    Keshavarz, A.
    Golshan, M. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2011, 35 (A3): : 217 - 222
  • [35] Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength
    van Leent, Tim
    Bock, Matthias
    Garthoff, Robert
    Redeker, Kai
    Zhang, Wei
    Bauer, Tobias
    Rosenfeld, Wenjamin
    Becher, Christoph
    Weinfurter, Harald
    PHYSICAL REVIEW LETTERS, 2020, 124 (01)
  • [36] Atom-photon entanglement in the system with competing k-photon and l-photon transitions
    Wu Qin
    Fang Mao-Fa
    Hu Yao-Hua
    CHINESE PHYSICS, 2007, 16 (07): : 1971 - 1975
  • [37] Scaling properties of cavity-enhanced atom cooling
    Horak, P.
    Ritsch, H.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (03): : 1 - 033422
  • [38] Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage -: art. no. 023805
    Amniat-Talab, M
    Guérin, S
    Sangouard, N
    Jauslin, HR
    PHYSICAL REVIEW A, 2005, 71 (02):
  • [39] Realistic loophole-free Bell test with atom-photon entanglement
    Teo, C.
    Araujo, M.
    Quintino, M. T.
    Minar, J.
    Cavalcanti, D.
    Scarani, V.
    Terra Cunha, M.
    Franca Santos, M.
    NATURE COMMUNICATIONS, 2013, 4
  • [40] Scaling properties of cavity-enhanced atom cooling
    Horak, P
    Ritsch, H
    PHYSICAL REVIEW A, 2001, 64 (03): : 7