Cavity-enhanced and temporally multiplexed atom-photon entanglement interface

被引:5
作者
Liu, Hailong [1 ,2 ]
Wang, Minjie [1 ,2 ]
Jiao, Haole [1 ,2 ]
Lu, Jiajin [1 ,2 ]
Fan, Wenxin [1 ,2 ]
Li, Shujing [1 ,2 ]
Wang, Hai [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT-MATTER INTERFACE; QUANTUM MEMORY; STORAGE; EFFICIENT; RETRIEVAL; COMMUNICATION; REPEATERS; ENSEMBLES;
D O I
10.1364/OE.483444
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Practical realization of quantum repeaters requires quantum memories with high retrieval efficiency, multi-mode storage capacities, and long lifetimes. Here, we report a high-retrieval-efficiency and temporally multiplexed atom-photon entanglement source. A train of 12 write pulses in time is applied to a cold atomic ensemble along different directions, which generates temporally multiplexed pairs of Stokes photons and spin waves via Duan-Lukin-Cirac-Zoller processes. The two arms of a polarization interferometer are used to encode photonic qubits of 12 Stokes temporal modes. The multiplexed spin-wave qubits, each of which is entangled with one Stokes qubit, are stored in a "clock" coherence. A ring cavity that resonates simultaneously with the two arms of the interferometer is used to enhance retrieval from the spin-wave qubits, with the intrinsic retrieval efficiency reaching 70.4%. The multiplexed source gives rise to a similar to 12.1-fold increase in atom-photon entanglement-generation probability compared to the single-mode source. The measured Bell parameter for the multiplexed atom-photon entanglement is 2.21(2), along with a memory lifetime of up to similar to 125 mu s. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:7200 / 7211
页数:12
相关论文
共 92 条
[61]  
Saglamyurek E, 2015, NAT PHOTONICS, V9, P83, DOI [10.1038/NPHOTON.2014.311, 10.1038/nphoton.2014.311]
[62]   Broadband waveguide quantum memory for entangled photons [J].
Saglamyurek, Erhan ;
Sinclair, Neil ;
Jin, Jeongwan ;
Slater, Joshua A. ;
Oblak, Daniel ;
Bussieres, Felix ;
George, Mathew ;
Ricken, Raimund ;
Sohler, Wolfgang ;
Tittel, Wolfgang .
NATURE, 2011, 469 (7331) :512-515
[63]   Quantum repeaters based on atomic ensembles and linear optics [J].
Sangouard, Nicolas ;
Simon, Christoph ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :33-80
[64]   Quantum Storage of Frequency-Multiplexed Heralded Single Photons [J].
Seri, Alessandro ;
Lago-Rivera, Dario ;
Lenhard, Andreas ;
Corrielli, Giacomo ;
Osellame, Roberto ;
Mazzera, Margherita ;
de Riedmatten, Hugues .
PHYSICAL REVIEW LETTERS, 2019, 123 (08)
[65]  
Simon C, 2010, EUR PHYS J D, V58, P1, DOI 10.1140/epjd/e2010-00103-y
[66]   Quantum repeaters with photon pair sources and multimode memories [J].
Simon, Christoph ;
de Riedmatten, Hugues ;
Afzelius, Mikael ;
Sangouard, Nicolas ;
Zbinden, Hugo ;
Gisin, Nicolas .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[67]   Towards a global quantum network [J].
Simon, Christoph .
NATURE PHOTONICS, 2017, 11 (11) :678-680
[68]   Temporally multiplexed quantum repeaters with atomic gases [J].
Simon, Christoph ;
de Riedmatten, Hugues ;
Afzelius, Mikael .
PHYSICAL REVIEW A, 2010, 82 (01)
[69]   Interfacing collective atomic excitations and single photons [J].
Simon, Jonathan ;
Tanji, Haruka ;
Thompson, James K. ;
Vuletic, Vladan .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[70]   Spectral Multiplexing for Scalable Quantum Photonics using an Atomic Frequency Comb Quantum Memory and Feed-Forward Control [J].
Sinclair, Neil ;
Saglamyurek, Erhan ;
Mallahzadeh, Hassan ;
Slater, Joshua A. ;
George, Mathew ;
Ricken, Raimund ;
Hedges, Morgan P. ;
Oblak, Daniel ;
Simon, Christoph ;
Sohler, Wolfgang ;
Tittel, Wolfgang .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)