Genomic prediction in pigs using data from a commercial crossbred population: insights from the Duroc x (Landrace x Yorkshire) three-way crossbreeding system

被引:10
作者
Liu, Siyi [1 ]
Yao, Tianxiong [1 ]
Chen, Dong [1 ]
Xiao, Shijun [1 ]
Chen, Liqing [1 ]
Zhang, Zhiyan [1 ]
机构
[1] Jiangxi Agr Univ, Natl Key Lab Swine Genet Breeding & Prod Technol, Nanchang 330045, Peoples R China
基金
中国国家自然科学基金;
关键词
WIDE ASSOCIATION; QUANTITATIVE TRAITS; BREEDING VALUES; LINKAGE; SELECTION; DISEQUILIBRIUM; PERFORMANCE; ANIMALS; GENES; LOCUS;
D O I
10.1186/s12711-023-00794-2
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Background Genomic selection is widely applied for genetic improvement in livestock crossbreeding systems to select excellent nucleus purebred (PB) animals and to improve the performance of commercial crossbred (CB) animals. Most current predictions are based solely on PB performance. Our objective was to explore the potential application of genomic selection of PB animals using genotypes of CB animals with extreme phenotypes in a three-way crossbreeding system as the reference population. Using real genotyped PB as ancestors, we simulated the production of 100,000 pigs for a Duroc x (Landrace x Yorkshire) DLY crossbreeding system. The predictive performance of breeding values of PB animals for CB performance using genotypes and phenotypes of (1) PB animals, (2) DLY animals with extreme phenotypes, and (3) random DLY animals for traits of different heritabilities (h(2) = 0.1, 0.3, and 0.5) was compared across different reference population sizes (500 to 6500) and prediction models (genomic best linear unbiased prediction (GBLUP) and Bayesian sparse linear mixed model (BSLMM)).Results Using a reference population consisting of CB animals with extreme phenotypes showed a definite predictive advantage for medium-and low-heritability traits and, in combination with the BSLMM model, significantly improved selection response for CB performance. For high-heritability traits, the predictive performance of a reference population of extreme CB phenotypes was comparable to that of PB phenotypes when the effect of the genetic correlation between PB and CB performance (r(pc)) on the accuracy obtained with a PB reference population was considered, and the former could exceed the latter if the reference size was large enough. For the selection of the first and terminal sires in a three-way crossbreeding system, prediction using extreme CB phenotypes outperformed the use of PB phenotypes, while the optimal design of the reference group for the first dam depended on the percentage of individuals from the corresponding breed that the PB reference data comprised and on the heritability of the target trait.Conclusions A commercial crossbred population is promising for the design of the reference population for genomic prediction, and selective genotyping of CB animals with extreme phenotypes has the potential for maximizing genetic improvement for CB performance in the pig industry.
引用
收藏
页数:20
相关论文
共 64 条
[1]   A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization [J].
Arking, Dan E. ;
Pfeufer, Arne ;
Post, Wendy ;
Kao, W. H. Linda ;
Newton-Cheh, Christopher ;
Ikeda, Morna ;
West, Kristen ;
Kashuk, Carl ;
Akyol, Mahmut ;
Perz, Siegfried ;
Jalilzadeh, Shapour ;
Illig, Thomas ;
Gieger, Christian ;
Guo, Chao-Yu ;
Larson, Martin G. ;
Wichmann, H. Erich ;
Marban, Eduardo ;
O'Donnell, Christopher J. ;
Hirschhorn, Joel N. ;
Kaeaeb, Stefan ;
Spooner, Peter M. ;
Meitinger, Thomas ;
Chakravarti, Aravinda .
NATURE GENETICS, 2006, 38 (06) :644-651
[2]   Correlation between purebred and crossbred performance under a two-locus model with additive by additive interaction [J].
Baumung, R ;
Solkner, J ;
Essl, A .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 1997, 114 (02) :89-98
[3]   Maximizing genetic gain for the sire line of a crossbreeding scheme utilizing both purebred and crossbred information [J].
Bijma, P ;
van Arendonk, JAM .
ANIMAL SCIENCE, 1998, 66 :529-542
[4]   Standard error of the genetic correlation: how much data do we need to estimate a purebred-crossbred genetic correlation? [J].
Bijma, Piter ;
Bastiaansen, John W. M. .
GENETICS SELECTION EVOLUTION, 2014, 46
[5]   Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection [J].
Boligon, A. A. ;
Long, N. ;
Albuquerque, L. G. ;
Weigel, K. A. ;
Gianola, D. ;
Rosa, G. J. M. .
JOURNAL OF ANIMAL SCIENCE, 2012, 90 (13) :4716-4722
[6]   Genomic breeding value prediction: methods and procedures [J].
Calus, M. P. L. .
ANIMAL, 2010, 4 (02) :157-164
[7]   A bivariate genomic model with additive, dominance and inbreeding depression effects for sire line and three-way crossbred pigs [J].
Christensen, Ole F. ;
Nielsen, Bjarne ;
Su, Guosheng ;
Xiang, Tao ;
Madsen, Per ;
Ostersen, Tage ;
Velander, Ingela ;
Strathe, Anders B. .
GENETICS SELECTION EVOLUTION, 2019, 51 (01)
[8]   Genomic evaluation of both purebred and crossbred performances [J].
Christensen, Ole F. ;
Madsen, Per ;
Nielsen, Bjarne ;
Su, Guosheng .
GENETICS SELECTION EVOLUTION, 2014, 46
[9]   The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes [J].
Clark, Samuel A. ;
Hickey, John M. ;
Daetwyler, Hans D. ;
van der Werf, Julius H. J. .
GENETICS SELECTION EVOLUTION, 2012, 44 :4
[10]   Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking [J].
Daetwyler, Hans D. ;
Calus, Mario P. L. ;
Pong-Wong, Ricardo ;
de los Campos, Gustavo ;
Hickey, John M. .
GENETICS, 2013, 193 (02) :347-+