Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy

被引:50
作者
Liu, Qiaolin [1 ,2 ,3 ]
Zhao, Yuliang [2 ,3 ,4 ,5 ,6 ]
Zhou, Huige [2 ,3 ,4 ,5 ]
Chen, Chunying [2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450052, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Key Lab Biomed Effects Nanoparticles & Nanosaf, Beijing 100190, Peoples R China
[3] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Med Sci, Res Unit Nanosci & Technol, Beijing 100039, Peoples R China
[6] GBA Natl Inst Nanotechnol Innovat, Guangzhou 510700, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ferroptosis; reactive oxygen species; stimuli-responsive nanomaterials; cancer therapy; PHOTODYNAMIC THERAPY; SONODYNAMIC THERAPY; OXIDATIVE STRESS; CELL-DEATH; RADIOTHERAPY; DELIVERY; BIOLOGY; PH; NANOPARTICLES; PEROXIDATION;
D O I
10.1093/rb/rbad004
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
引用
收藏
页数:27
相关论文
共 189 条
[1]   Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy [J].
Aboelella, Nada S. ;
Brandle, Caitlin ;
Kim, Timothy ;
Ding, Zhi-Chun ;
Zhou, Gang .
CANCERS, 2021, 13 (05) :1-25
[2]   Photodynamic Therapy of Cancer: An Update [J].
Agostinis, Patrizia ;
Berg, Kristian ;
Cengel, Keith A. ;
Foster, Thomas H. ;
Girotti, Albert W. ;
Gollnick, Sandra O. ;
Hahn, Stephen M. ;
Hamblin, Michael R. ;
Juzeniene, Asta ;
Kessel, David ;
Korbelik, Mladen ;
Moan, Johan ;
Mroz, Pawel ;
Nowis, Dominika ;
Piette, Jacques ;
Wilson, Brian C. ;
Golab, Jakub .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (04) :250-281
[3]   In situ analysis of nanoparticle soft corona and dynamic evolution [J].
Baimanov, Didar ;
Wang, Jing ;
Zhang, Jun ;
Liu, Ke ;
Cong, Yalin ;
Shi, Xiaomeng ;
Zhang, Xiaohui ;
Li, Yufeng ;
Li, Xiumin ;
Qiao, Rongrong ;
Zhao, Yuliang ;
Zhou, Yunlong ;
Wang, Liming ;
Chen, Chunying .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death [J].
Battaglia, Anna Martina ;
Chirillo, Roberta ;
Aversa, Ilenia ;
Sacco, Alessandro ;
Costanzo, Francesco ;
Biamonte, Flavia .
CELLS, 2020, 9 (06) :1-26
[5]   The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis [J].
Bersuker, Kirill ;
Hendricks, Joseph M. ;
Li, Zhipeng ;
Magtanong, Leslie ;
Ford, Breanna ;
Tang, Peter H. ;
Roberts, Melissa A. ;
Tong, Bingqi ;
Maimone, Thomas J. ;
Zoncu, Roberto ;
Bassik, Michael C. ;
Nomura, Daniel K. ;
Dixon, Scott J. ;
Olzmann, James A. .
NATURE, 2019, 575 (7784) :688-+
[6]   Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine [J].
Brooks, William L. A. ;
Sumerlin, Brent S. .
CHEMICAL REVIEWS, 2016, 116 (03) :1375-1397
[7]   Dynamic intracellular exchange of nanomaterials' protein corona perturbs proteostasis and remodels cell metabolism [J].
Cai, Rong ;
Ren, Jiayu ;
Guo, Mengyu ;
Wei, Taotao ;
Liu, Ying ;
Xie, Chunyu ;
Zhang, Peng ;
Guo, Zhiling ;
Chetwynd, Andrew J. ;
Ke, Pu Chun ;
Lynch, Iseult ;
Chen, Chunying .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (23)
[8]   Tumor-Microenvironment-Responsive Cascade Reactions by a Cobalt-Single-Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy [J].
Cai, Shuangfei ;
Liu, Jiaming ;
Ding, Jianwei ;
Fu, Zhao ;
Li, Haolin ;
Xiong, Youlin ;
Lian, Zheng ;
Yang, Rong ;
Chen, Chunying .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (48)
[9]   Metal Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery [J].
Cai, Wen ;
Wang, Junqing ;
Chu, Chengchao ;
Chen, Wei ;
Wu, Chunsheng ;
Liu, Gang .
ADVANCED SCIENCE, 2019, 6 (01)
[10]   Enzyme-Triggered Disassembly of Perylene Monoimide-based Nanoclusters for Activatable and Deep Photodynamic Therapy [J].
Cai, Yang ;
Ni, Dongqi ;
Cheng, Wenyu ;
Ji, Chendong ;
Wang, Yaling ;
Muellen, Klaus ;
Su, Zhiqiang ;
Liu, Ying ;
Chen, Chunying ;
Yin, Meizhen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) :14014-14018