Impact of climate warming on permafrost changes in the Qinghai-Tibet Plateau

被引:14
|
作者
Li, Renwei [1 ,2 ]
Zhang, Mingyi [1 ,2 ]
Andreeva, Varvara [3 ]
Pei, Wansheng [1 ,2 ]
Zhou, Yanqiao [1 ,2 ]
Misailov, Ivan [3 ]
Basharin, Nikolay [3 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Russian Acad Sci, Melnikov Permafrost Inst, Siberian Branch, Yakutsk 677010, Russia
基金
中国国家自然科学基金;
关键词
Climate warming; Permafrost changes; Thermal stability; Active layer thickness; Qinghai -Tibet Plateau; ACTIVE-LAYER THICKNESS; THERMAL STATE; NORTHERN-HEMISPHERE; MAP; TEMPERATURE; AREA;
D O I
10.1016/j.coldregions.2022.103692
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Evaluating the changes in permafrost in the Qinghai-Tibet Plateau (QTP) is important for environmental researches and engineering applications, particularly under climate warming. In this study, the temperature at the top of permafrost (TTOP) and modified Stefan models were employed to explore the spatiotemporal changes in permafrost distribution, permafrost thermal stability, and active layer thickness (ALT) in the historical (1980-2000), current (2001-2020), and future (2021-2100) periods. The average warming trend from the historical to current period was 0.25 degrees C/10 a, and the average permafrost area declined by 8.84% since the historical period. Data from four shared socio-economic pathways (SSP), namely SSP126, SSP245, SSP370, and SSP585, were applied to evaluate future changes. Overall, permafrost would continue to degrade, with approximately 18.80%, 40.81%, 56.96% and 63.28% of permafrost in 2020 disappearing by the end of 21st century under the SSP126, SSP245, SSP370, and SSP585 scenarios, respectively. In addition, permafrost thermal stability would decrease, and under the SSP585 scenario, the percentage of unstable permafrost would increase to 25.58% by the end of the 21st century. Moreover, under the SSP585 scenario, more than half of permafrost region would be covered by an active layer with the thickness exceeding 4 m by the end of the 21st century. The present results can provide a reference basis for environmental protection and engineering risk management.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] How does soil water content influence permafrost evolution on the Qinghai-Tibet Plateau under climate warming?
    Ji, Fang
    Fan, Linfeng
    Kuang, Xingxing
    Li, Xin
    Cao, Bin
    Cheng, Guodong
    Yao, Yingying
    Zheng, Chunmiao
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (06)
  • [2] Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau
    Wu, Tonghua
    Zhao, Lin
    Li, Ren
    Wang, Qinxue
    Xie, Changwei
    Pang, Qiangqiang
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (04) : 920 - 930
  • [3] Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming
    Zhang, Guofei
    Nan, Zhuotong
    Zhao, Lin
    Liang, Yijia
    Cheng, Guodong
    EARTH AND PLANETARY SCIENCE LETTERS, 2021, 562
  • [4] Evidence of Warming From Long-Term Records of Climate and Permafrost in the Hinterland of the Qinghai-Tibet Plateau
    Zhou, Fujun
    Yao, Miaomiao
    Fan, Xingwen
    Yin, Guoan
    Meng, Xianglian
    Lin, Zhanju
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [5] Permafrost Degradation Risk Evaluation in the Qinghai-Tibet Plateau Under Climate Change Based on Machine Learning Models
    Zhang, Mingyi
    Li, Renwei
    Pei, Wansheng
    Zhou, Yanqiao
    Li, Guanji
    Yang, Sheng
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (02)
  • [6] Warming effects on carbon release in a permafrost area of Qinghai-Tibet Plateau
    Peng, Fei
    Xue, Xian
    You, Quangang
    Zhou, Xuhui
    Wang, Tao
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (01) : 57 - 66
  • [7] Interaction of permafrost degradation and thermokarst lakes in the Qinghai-Tibet Plateau
    Xu, Zhida
    Jiang, Liming
    Guo, Rui
    Huang, Ronggang
    Zhou, Zhiwei
    Niu, Fujun
    Jiao, Zhiping
    GEOMORPHOLOGY, 2023, 425
  • [8] Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau
    Cheng, Guodong
    Zhao, Lin
    Li, Ren
    Wu, Xiaodong
    Sheng, Yu
    Hu, Guojie
    Zou, Defu
    Jin, Huijun
    Li, Xin
    Wu, Qingbai
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (27): : 2783 - 2795
  • [9] Projected Changes in Permafrost Active Layer Thickness Over the Qinghai-Tibet Plateau Under Climate Change
    Zhao, Dongsheng
    Wu, Shaohong
    WATER RESOURCES RESEARCH, 2019, 55 (09) : 7860 - 7875
  • [10] ANALYSIS OF SUBGRADE IN PERMAFROST REGION AND PERMAFROST ALONG QINGHAI-TIBET RAILWAY FOR IMPACT OF CLIMATE WARMING
    Ge Jianjun
    JOURNAL OF EARTHQUAKE AND TSUNAMI, 2009, 3 (03) : 195 - 208