Vertex-degree function index for concave functions of graphs with a given clique number

被引:0
作者
Yang, Jiaxiang [1 ]
Liu, Hechao [2 ]
Wang, Yixiang [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Hubei Normal Univ, Sch Math & Stat, Huangshi Key Lab Metaverse & Virtual Simulat, Huangshi 435002, Peoples R China
关键词
Vertex-degree function index; Clique number; Concave function; ZAGREB INDEXES; (N;
D O I
10.1007/s12190-024-02043-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and any function f on the positive integers set Z+,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>+,$$\end{document} vertex-degree function index Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_f(G)$$\end{document} is defined as the sum of f(dG(v))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(d_G(v))$$\end{document} over v is an element of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}, where dG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_G(v)$$\end{document} is the degree of v in G. For any n,k is an element of Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,k\in \mathbb {Z}<^>+$$\end{document} with n >= k,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge k,$$\end{document} connected graphs with n vertices and clique number k form the set Wn,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {W}_{n,k}$$\end{document}. In this paper, for any strictly concave and increasing function f on Z+,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>+,$$\end{document} we determine the maximal and minimal values of Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_f(G)$$\end{document} over G is an element of Wn,k,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in \mathcal {W}_{n,k},$$\end{document} and characterize the corresponding graphs G is an element of Wn,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in \mathcal {W}_{n,k}$$\end{document} with the extremal values. We also get the maximum vertex-degree function index Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_f(G)$$\end{document}, where f(x) is a strictly concave and decreasing function for x >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\ge 1$$\end{document}.
引用
收藏
页码:2197 / 2208
页数:12
相关论文
共 13 条
[1]  
Erdos P., 1970, MAT LAPOK, V21, P249
[2]   ON THE REDUCED SECOND ZAGREB INDEX OF GRAPHS [J].
Gao, Fang ;
Xu, Kexiang .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) :975-988
[3]   Extremal Graphs to Vertex Degree Function Index for Convex Functions [J].
He, Dong ;
Ji, Zhen ;
Yang, Chenxu ;
Das, Kinkar Chandra .
AXIOMS, 2023, 12 (01)
[4]   Graphs with Minimum Vertex-Degree Function-Index for Convex Functions [J].
Hu, Zhoukun ;
Li, Xueliang ;
Peng, Danni .
MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (03) :521-533
[5]   Extremal vertex-degree function index for trees and unicyclic graphs with given independence number [J].
Tomescu, Ioan .
DISCRETE APPLIED MATHEMATICS, 2022, 306 :83-88
[6]   Graphs with Given Cyclomatic Number Extremal Relatively to Vertex Degree Function Index for Convex Functions [J].
Tomescu, Ioan .
MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 87 (01) :109-114
[7]  
Tomescu I, 2021, MATCH-COMMUN MATH CO, V85, P285
[8]   Degree-based function index for graphs with given diameter [J].
Vetrik, Tomas .
DISCRETE APPLIED MATHEMATICS, 2023, 333 :59-70
[9]   A formula with its applications on the difference of Zagreb indices of graphs [J].
Xu, Kexiang ;
Gao, Fang ;
Das, Kinkar Chandra ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (06) :1618-1626
[10]   Some extremal graphs with respect to inverse degree [J].
Xu, Kexiang ;
Das, Kinkar Ch. .
DISCRETE APPLIED MATHEMATICS, 2016, 203 :171-183