Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability

被引:17
作者
Chen, Zhenjia [1 ,2 ]
Lin, Zhenyuan [1 ,2 ]
Yang, Ji [3 ]
Chen, Cong [1 ,2 ]
Liu, Di [1 ,2 ]
Shan, Liuting [1 ,2 ]
Hu, Yuanyuan [4 ]
Guo, Tailiang [1 ,2 ]
Chen, Huipeng [1 ,2 ]
机构
[1] Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display Te, Fuzhou 350002, Peoples R China
[2] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350100, Peoples R China
[3] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Fujian, Peoples R China
[4] Hunan Univ, Changsha Semicond Technol & Applicat Innovat Res I, Coll Semicond, Coll Integrated Circuits, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
INTELLIGENCE;
D O I
10.1038/s41467-024-46246-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep neural networks have revolutionized several domains, including autonomous driving, cancer detection, and drug design, and are the foundation for massive artificial intelligence models. However, hardware neural network reports still mainly focus on shallow networks (2 to 5 layers). Implementing deep neural networks in hardware is challenging due to the layer-by-layer structure, resulting in long training times, signal interference, and low accuracy due to gradient explosion/vanishing. Here, we utilize negative ultraviolet photoconductive light-emitting memristors with intrinsic parallelism and hardware-software co-design to achieve electrical information's optical cross-layer transmission. We propose a hybrid ultra-deep photoelectric neural network and an ultra-deep super-resolution reconstruction neural network using light-emitting memristors and cross-layer block, expanding the networks to 54 and 135 layers, respectively. Further, two networks enable transfer learning, approaching or surpassing software-designed networks in multi-dataset recognition and high-resolution restoration tasks. These proposed strategies show great potential for high-precision multifunctional hardware neural networks and edge artificial intelligence. Parallel information transmission components and hardware strategies are still lacking in neural networks. Here, the authors propose a strategy to use light emitting memristors with negative ultraviolet photoconductivity and intrinsic parallelism to construct direct information cross-layer modules.
引用
收藏
页数:12
相关论文
共 51 条
[41]   Flexible multiterminal photoelectronic neurotransistors based on self-assembled rubber semiconductors for spatiotemporal information processing [J].
Xu, Yunchao ;
Zhang, Gengming ;
Liu, Wanrong ;
Jin, Chenxing ;
Nie, Yiling ;
Sun, Jia ;
Yang, Junliang .
SMARTMAT, 2023, 4 (02)
[42]   Brain-inspired models for visual object recognition: an overview [J].
Yang, Xi ;
Yan, Jie ;
Wang, Wen ;
Li, Shaoyi ;
Hu, Bo ;
Lin, Jian .
ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (07) :5263-5311
[43]   Fully hardware-implemented memristor convolutional neural network [J].
Yao, Peng ;
Wu, Huaqiang ;
Gao, Bin ;
Tang, Jianshi ;
Zhang, Qingtian ;
Zhang, Wenqiang ;
Yang, J. Joshua ;
Qian, He .
NATURE, 2020, 577 (7792) :641-646
[44]   Image denoising method based on a deep convolution neural network [J].
Zhang, Fu ;
Cai, Nian ;
Wu, Jixiu ;
Cen, Guandong ;
Wang, Han ;
Chen, Xindu .
IET IMAGE PROCESSING, 2018, 12 (04) :485-493
[45]  
Zhang K, 2019, CLUSTER COMPUT, V22, pS5115, DOI [10.1007/s10586-017-1443-x, 10.1109/ICC.2017.7997360, 10.1017/9781139024853]
[46]   Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks [J].
Zhang, Tielin ;
Cheng, Xiang ;
Jia, Shuncheng ;
Poo, Mu-Ming ;
Zeng, Yi ;
Xu, Bo .
SCIENCE ADVANCES, 2021, 7 (43)
[47]   Edge learning using a fully integrated neuro-inspired memristor chip [J].
Zhang, Wenbin ;
Yao, Peng ;
Gao, Bin ;
Liu, Qi ;
Wu, Dong ;
Zhang, Qingtian ;
Li, Yuankun ;
Qin, Qi ;
Li, Jiaming ;
Zhu, Zhenhua ;
Cai, Yi ;
Wu, Dabin ;
Tang, Jianshi ;
Qian, He ;
Wang, Yu ;
Wu, Huaqiang .
SCIENCE, 2023, 381 (6663) :1205-1211
[48]   Neuro-inspired computing chips [J].
Zhang, Wenqiang ;
Gao, Bin ;
Tang, Jianshi ;
Yao, Peng ;
Yu, Shimeng ;
Chang, Meng-Fan ;
Yoo, Hoi-Jun ;
Qian, He ;
Wu, Huaqiang .
NATURE ELECTRONICS, 2020, 3 (07) :371-382
[49]   A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing [J].
Zhong, Yanan ;
Tang, Jianshi ;
Li, Xinyi ;
Liang, Xiangpeng ;
Liu, Zhengwu ;
Li, Yijun ;
Xi, Yue ;
Yao, Peng ;
Hao, Zhenqi ;
Gao, Bin ;
Qian, He ;
Wu, Huaqiang .
NATURE ELECTRONICS, 2022, 5 (10) :672-681
[50]   Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve [J].
Zhu, Yangbin ;
Wu, Chaoxing ;
Xu, Zhongwei ;
Liu, Yang ;
Hu, Hailong ;
Guo, Tailiang ;
Kim, Tae Whan ;
Chai, Yang ;
Li, Fushan .
NANO LETTERS, 2021, 21 (14) :6087-6094