Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation

被引:6
作者
Alonso-Gonzalez, Esteban [1 ]
Aalstad, Kristoffer [2 ]
Pirk, Norbert [2 ]
Mazzolini, Marco [2 ]
Treichler, Desiree [2 ]
Leclercq, Paul [2 ]
Westermann, Sebastian [2 ]
Lopez-Moreno, Juan Ignacio [3 ]
Gascoin, Simon [1 ]
机构
[1] Univ Toulouse, Ctr Etud Spatiales Biosphere, CNRS CNES IRD INRAE UPS, Toulouse, France
[2] Univ Oslo, Dept Geosci, Oslo, Norway
[3] Spanish Natl Res Council IPE CSIC, Inst Pirena Ecol, Zaragoza, Spain
关键词
SEQUENTIAL DATA ASSIMILATION; PARTICLE FILTER; KALMAN FILTER; SPATIAL-DISTRIBUTION; WATER EQUIVALENT; SPANISH PYRENEES; MOUNTAIN REGIONS; ALPINE TERRAIN; DEPTH; COVER;
D O I
10.5194/hess-27-4637-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Data assimilation techniques that integrate available observations with snow models have been proposed as a viable option to simultaneously help constrain model uncertainty and add value to observations by improving estimates of the snowpack state. However, the propagation of information from spatially sparse observations in high-resolution simulations remains an under-explored topic. To remedy this, the development of data assimilation techniques that can spread information in space is a crucial step. Herein, we examine the potential of spatio-temporal data assimilation for integrating sparse snow depth observations with hyper-resolution (5 m ) snow simulations in the Izas central Pyrenean experimental catchment (Spain). Our experiments were developed using the Multiple Snow Data Assimilation System (MuSA) with new improvements to tackle the spatio-temporal data assimilation. Therein, we used a deterministic ensemble smoother with multiple data assimilation (DES-MDA) with domain localization.Three different experiments were performed to showcase the capabilities of spatio-temporal information transfer in hyper-resolution snow simulations. Experiment I employed the conventional geographical Euclidean distance to map the similarity between cells. Experiment II utilized the Mahalanobis distance in a multi-dimensional topographic space using terrain parameters extracted from a digital elevation model. Experiment III utilized a more direct mapping of snowpack similarity from a single complete snow depth map together with the easting and northing coordinates. Although all experiments showed a noticeable improvement in the snow patterns in the catchment compared with the deterministic open loop in terms of correlation ( r = 0.13 ) and root mean square error (RMSE = 1.11 m ), the use of topographical dimensions (Experiment II, r = 0.63 and RMSE = 0.89 m ) and observations (Experiments III, r = 0.92 and RMSE = 0.44 m ) largely outperform the simulated patterns in Experiment I ( r = 0.38 and RMSE = 1.16 m ). At the same time, Experiments II and III are considerably more challenging to set up. The results of these experiments can help pave the way for the creation of snow reanalysis and forecasting tools that can seamlessly integrate sparse information from national monitoring networks and high-resolution satellite information.
引用
收藏
页码:4637 / 4659
页数:23
相关论文
共 117 条
[31]   Perspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication [J].
De Lannoy, Gabrielle J. M. ;
Bechtold, Michel ;
Albergel, Clement ;
Brocca, Luca ;
Calvet, Jean Christophe ;
Carrassi, Alberto ;
Crow, Wade T. ;
de Rosnay, Patricia ;
Durand, Michael ;
Forman, Barton ;
Geppert, Gernot ;
Girotto, Manuela ;
Franssen, Harrie-Jan Hendricks ;
Jonas, Tobias ;
Kumar, Sujay ;
Lievens, Hans ;
Lu, Yang ;
Massari, Christian ;
Pauwels, Valentijn R. N. ;
Reichle, Rolf H. ;
Steele-Dunne, Susan .
FRONTIERS IN WATER, 2022, 4
[32]   Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado [J].
De Lannoy, Gabrielle J. M. ;
Reichle, Rolf H. ;
Arsenault, Kristi R. ;
Houser, Paul R. ;
Kumar, Sujay ;
Verhoest, Niko E. C. ;
Pauwels, Valentijn R. N. .
WATER RESOURCES RESEARCH, 2012, 48
[33]   Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model [J].
De Lannoy, Gabrielle J. M. ;
Reichle, Rolf H. ;
Houser, Paul R. ;
Arsenault, Kristi R. ;
Verhoest, Niko E. C. ;
Pauwels, Valentijn R. N. .
JOURNAL OF HYDROMETEOROLOGY, 2010, 11 (02) :352-369
[34]   Initialisation of Land Surface Variables for Numerical Weather Prediction [J].
de Rosnay, Patricia ;
Balsamo, Gianpaolo ;
Albergel, Clement ;
Munoz-Sabater, Joaquin ;
Isaksen, Lars .
SURVEYS IN GEOPHYSICS, 2014, 35 (03) :607-621
[35]   Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback [J].
Dery, Stephen J. ;
Brown, Ross D. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (22)
[36]   Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data [J].
Deschamps-Berger, Cesar ;
Gascoin, Simon ;
Shean, David ;
Besso, Hannah ;
Guiot, Ambroise ;
Lopez-Moreno, Juan Ignacio .
CRYOSPHERE, 2023, 17 (07) :2779-2792
[37]  
DeWalle D.R., 2008, Principles of Snow Hydrology, DOI [DOI 10.1017/CBO9780511535673, 10.1017/CBO9780511535673.]
[38]   Estimating the spatial distribution of snow water equivalent in the world's mountains [J].
Dozier, Jeff ;
Bair, Edward H. ;
Davis, Robert E. .
WILEY INTERDISCIPLINARY REVIEWS-WATER, 2016, 3 (03) :461-474
[39]   Time-space continuity of daily maps of fractional snow cover and albedo from MODIS [J].
Dozier, Jeff ;
Painter, Thomas H. ;
Rittger, Karl ;
Frew, James E. .
ADVANCES IN WATER RESOURCES, 2008, 31 (11) :1515-1526
[40]  
Efron B, 2016, INST MATH STAT MG, P1, DOI 10.1017/CBO9781316576533