ECG Forecasting System Based on Long Short-Term Memory

被引:2
|
作者
Zacarias, Henriques [1 ,2 ,3 ]
Marques, Joao Alexandre Lobo [4 ]
Felizardo, Virginie [2 ,5 ]
Pourvahab, Mehran [5 ]
Garcia, Nuno M. [2 ,6 ]
机构
[1] Univ Beira Interior, Fac Ciencias Saude, P-6201001 Covilha, Portugal
[2] Inst Telecomunicacoes, P-6201001 Lisbon, Portugal
[3] Univ Mandume Ya Ndemufayo, Inst Politecn Huila, Lubango 1049001, Angola
[4] Univ St Joseph, Lab Appl Neurosci, Macau 999078, Peoples R China
[5] Univ Beira Interior, Dept Informat, P-6201001 Covilha, Portugal
[6] Univ Lisbon, Fac Ciencias, P-1749016 Lisbon, Portugal
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 01期
关键词
electrocardiogram; long short-term memory; forecasting;
D O I
10.3390/bioengineering11010089
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Worldwide, cardiovascular diseases are some of the primary causes of death; yet the early detection and diagnosis of such diseases have the potential to save many lives. Technological means of detection are becoming increasingly essential and numerous techniques have been created for this purpose, such as forecasting. Of these techniques, the time series forecasting technique seeks to predict future events. The long-term time series forecasting of physiological data could assist medical professionals in predicting and treating patients based on very early diagnosis. This article presents a model that utilizes a deep learning technique to predict long-term ECG signals. The forecasting model can learn signals' nonlinearity, nonstationarity, and complexity based on a long short-term memory architecture. However, this is not a trivial task as the correct forecasting of a signal that closely resembles the original complex signal's structure and behavior while minimizing any differences in amplitude continues to pose challenges. To achieve this goal, we used a dataset available on the Physio net database, called MIT-BIH, with 48 ECG recordings of 30 min each. The developed model starts with pre-processing to reduce interference in the original signals, then applies a deep learning algorithm, based on a long short-term memory (LTSM) neural network with two hidden layers. Next, we applied the root mean square error (RMSE) and mean absolute error (MAE) metrics to evaluate the performance of the model and obtained an average RMSE of 0.0070 +/- 0.0028 and an average MAE of 0.0522 +/- 0.0098 across all simulations. The results indicate that the proposed LSTM model is a promising technique for ECG forecasting, considering the trends of the changes in the original data series, most notably in R-peak amplitude. Given the model's accuracy and the features of the physiological signals, the system could be used to improve existing predictive healthcare systems for cardiovascular monitoring.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Decomposition-based long short-term memory model for price forecasting of agricultural commodities
    Kapil Choudhary
    Girish Kumar Jha
    Ronit Jaiswal
    Rajeev Ranjan Kumar
    Iran Journal of Computer Science, 2024, 7 (4) : 861 - 873
  • [42] Forecasting hotel reservations with long short-term memory-based recurrent neural networks
    Jian Wang
    Amar Duggasani
    International Journal of Data Science and Analytics, 2020, 9 : 77 - 94
  • [43] Long short-term memory network based deep transfer learning approach for sales forecasting
    Erol, Begum
    Inkaya, Tulin
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (01): : 191 - 202
  • [44] Peak Load Forecasting Based on Long Short Term Memory
    Ermatita
    Pahendra, Iwan
    Darnila, Eva
    Sadli, Muhammad
    Sinambela, Marzuki
    Fuadi, Wahyu
    2019 INTERNATIONAL CONFERENCE ON INFORMATICS, MULTIMEDIA, CYBER AND INFORMATION SYSTEM (ICIMCIS), 2019, : 137 - 139
  • [45] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [46] Forecasting hotel reservations with long short-term memory-based recurrent neural networks
    Wang, Jian
    Duggasani, Amar
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 9 (01) : 77 - 94
  • [47] Forecasting e-Journal Unique Visitors using Smoothed Long Short-Term Memory
    Wibawa, Aji Prasetya
    Ula, Riska Rosidatul
    Utama, Agung Bella Putra
    Chuttur, Mohammad Yasser
    Pranolo, Andri
    Haviluddin
    2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND INFORMATION ENGINEERING (ICEEIE 2021), 2021, : 609 - 613
  • [48] Forecasting of FOREX Price Trend Using Recurrent Neural Network - Long Short-term Memory
    Dobrovolny, Michal
    Soukal, Ivan
    Lim, Kok Cheng
    Selamat, Ali
    Krejcar, Ondrej
    HRADEC ECONOMIC DAYS 2020, VOL 10, PT 1, 2020, 10 : 95 - 103
  • [49] Improvement of Long Short-Term Memory via CEEMDAN and Logistic Maps for the Power Consumption Forecasting
    Boriratrit, Samnyoo
    Chatthaworn, Rongrit
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [50] Optimized Deep Stacked Long Short-Term Memory Network for Long-Term Load Forecasting
    Farrag, Tamer Ahmed
    Elattar, Ehab E.
    IEEE ACCESS, 2021, 9 : 68511 - 68522