ECG Forecasting System Based on Long Short-Term Memory

被引:2
|
作者
Zacarias, Henriques [1 ,2 ,3 ]
Marques, Joao Alexandre Lobo [4 ]
Felizardo, Virginie [2 ,5 ]
Pourvahab, Mehran [5 ]
Garcia, Nuno M. [2 ,6 ]
机构
[1] Univ Beira Interior, Fac Ciencias Saude, P-6201001 Covilha, Portugal
[2] Inst Telecomunicacoes, P-6201001 Lisbon, Portugal
[3] Univ Mandume Ya Ndemufayo, Inst Politecn Huila, Lubango 1049001, Angola
[4] Univ St Joseph, Lab Appl Neurosci, Macau 999078, Peoples R China
[5] Univ Beira Interior, Dept Informat, P-6201001 Covilha, Portugal
[6] Univ Lisbon, Fac Ciencias, P-1749016 Lisbon, Portugal
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 01期
关键词
electrocardiogram; long short-term memory; forecasting;
D O I
10.3390/bioengineering11010089
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Worldwide, cardiovascular diseases are some of the primary causes of death; yet the early detection and diagnosis of such diseases have the potential to save many lives. Technological means of detection are becoming increasingly essential and numerous techniques have been created for this purpose, such as forecasting. Of these techniques, the time series forecasting technique seeks to predict future events. The long-term time series forecasting of physiological data could assist medical professionals in predicting and treating patients based on very early diagnosis. This article presents a model that utilizes a deep learning technique to predict long-term ECG signals. The forecasting model can learn signals' nonlinearity, nonstationarity, and complexity based on a long short-term memory architecture. However, this is not a trivial task as the correct forecasting of a signal that closely resembles the original complex signal's structure and behavior while minimizing any differences in amplitude continues to pose challenges. To achieve this goal, we used a dataset available on the Physio net database, called MIT-BIH, with 48 ECG recordings of 30 min each. The developed model starts with pre-processing to reduce interference in the original signals, then applies a deep learning algorithm, based on a long short-term memory (LTSM) neural network with two hidden layers. Next, we applied the root mean square error (RMSE) and mean absolute error (MAE) metrics to evaluate the performance of the model and obtained an average RMSE of 0.0070 +/- 0.0028 and an average MAE of 0.0522 +/- 0.0098 across all simulations. The results indicate that the proposed LSTM model is a promising technique for ECG forecasting, considering the trends of the changes in the original data series, most notably in R-peak amplitude. Given the model's accuracy and the features of the physiological signals, the system could be used to improve existing predictive healthcare systems for cardiovascular monitoring.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The importance of short lag-time in the runoff forecasting model based on long short-term memory
    Chen, Xi
    Huang, Jiaxu
    Han, Zhen
    Gao, Hongkai
    Liu, Min
    Li, Zhiqiang
    Liu, Xiaoping
    Li, Qingli
    Qi, Honggang
    Huang, Yonggui
    JOURNAL OF HYDROLOGY, 2020, 589
  • [32] Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
    Dobrovolny, Michal
    Soukal, Ivan
    Salamat, Ali
    Cierniak-Emerych, Anna
    Krejcar, Ondrej
    HRADEC ECONOMIC DAYS, VOL 11(1), 2021, 11 : 145 - 154
  • [33] Photovoltaic power forecasting with a long short-term memory autoencoder networks
    Mohammed Sabri
    Mohammed El Hassouni
    Soft Computing, 2023, 27 : 10533 - 10553
  • [34] Forecasting small area populations with long short-term memory networks
    Grossman, Irina
    Wilson, Tom
    Temple, Jeromey
    SOCIO-ECONOMIC PLANNING SCIENCES, 2023, 88
  • [35] Photovoltaic power forecasting with a long short-term memory autoencoder networks
    Sabri, Mohammed
    El Hassouni, Mohammed
    SOFT COMPUTING, 2023, 27 (15) : 10533 - 10553
  • [36] Pattern-based Long Short-term Memory for Mid-term Electrical Load Forecasting
    Pelka, Pawel
    Dudek, Grzegorz
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [37] Developing an Intelligent Agricultural System Based on Long Short-Term Memory
    Hsin-Te Wu
    Mobile Networks and Applications, 2021, 26 : 1397 - 1406
  • [38] A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
    Zanfei, Ariele
    Brentan, Bruno Melo
    Menapace, Andrea
    Righetti, Maurizio
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (05) : 1053 - 1065
  • [39] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [40] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940