Application of bidirectional long short-term memory network for prediction of cognitive age

被引:0
作者
Wong, Shi-Bing [1 ,2 ]
Tsao, Yu [3 ]
Tsai, Wen-Hsin [1 ,2 ]
Wang, Tzong-Shi [2 ,4 ]
Wu, Hsin-Chi [2 ,5 ]
Wang, Syu-Siang [6 ]
机构
[1] Buddhist Tzu Chi Med Fdn, Taipei Tzu Chi Hosp, Dept Pediat, New Taipei, Taiwan
[2] Tzu Chi Univ, Sch Med, Hualien, Taiwan
[3] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei, Taiwan
[4] Buddhist Tzu Chi Med Fdn, Taipei Tzu Chi Hosp, Dept Psychiat, New Taipei, Taiwan
[5] Buddhist Tzu Chi Med Fdn, Taipei Tzu Chi Hosp, Dept Phys Med & Rehabil, New Taipei, Taiwan
[6] Yuan Ze Univ, Dept Elect Engn, Taoyuan, Taiwan
关键词
DEVELOPMENTAL DELAY; BRAIN AGE; ELECTROENCEPHALOGRAM; CHILDREN; LSTM; EEG;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electroencephalography (EEG) measures changes in neuronal activity and can reveal significant changes from infancy to adulthood concomitant with brain maturation, making it a potential physiological marker of brain maturation and cognition. To investigate a promising deep learning tool for EEG classification, we applied the bidirectional long short-term memory (BLSTM) algorithm to analyze EEG data from the pediatric EEG laboratory of Taipei Tzu Chi Hospital. The trained BLSTM model was 86% accurate when identifying EEGs from young children (8 months-6 years) and adolescents (12-20 years). However, there was only a modest classification accuracy (69.3%) when categorizing EEG samples into three age groups (8 months-6 years, 6-12 years, and 12-20 years). For EEG samples from patients with intellectual disability, the prediction accuracy of the trained BLSTM model was 46.4%, which was significantly lower than its accuracy for EEGs from neurotypical patients, indicating that the individual's intelligence plays a major role in the age prediction. This study confirmed that scalp EEG can reflect brain maturation and the BLSTM algorithm is a feasible deep learning tool for the identification of cognitive age. The trained model can potentially be applied to clinical services as a supportive measurement of neurodevelopmental status.
引用
收藏
页数:10
相关论文
共 46 条
[1]  
Al Sawaf A., 2021, EEG basal cortical rhythms. StatPearls
[2]   Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging [J].
Anaturk, Melis ;
Kaufmann, Tobias ;
Cole, James H. ;
Suri, Sana ;
Griffanti, Ludovica ;
Zsoldos, Eniko ;
Filippini, Nicola ;
Singh-Manoux, Archana ;
Kivimaki, Mika ;
Westlye, Lars T. ;
Ebmeier, Klaus P. ;
de Lange, Ann-Marie G. .
HUMAN BRAIN MAPPING, 2021, 42 (06) :1626-1640
[3]   Interpreting EEG alpha activity [J].
Bazanova, O. M. ;
Vernon, D. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2014, 44 :94-110
[4]   Editorial introduction to the Neural Networks special issue on Deep Learning of Representations [J].
Bengio, Yoshua ;
Lee, Honglak .
NEURAL NETWORKS, 2015, 64 :1-3
[5]   Graph Transformer Geometric Learning of Brain Networks Using Multimodal MR Images for Brain Age Estimation [J].
Cai, Hongjie ;
Gao, Yue ;
Liu, Manhua .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) :456-466
[6]   Assessment of neonatal EEG background and neurodevelopment in full-term small for their gestational age infants [J].
Castro Conde, Jose R. ;
Gonzalez Campo, Candelaria ;
Gonzalez Gonzalez, Nieves L. ;
Reyes Millan, Beatriz ;
Gonzalez Barrios, Desire ;
Jimenez Sosa, Alejandro ;
Quintero Fuentes, Itziar .
PEDIATRIC RESEARCH, 2020, 88 (01) :91-99
[7]  
Chen X, 2011, 2011 5 INT C BIOINFO
[8]   Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics [J].
De Ridder, Jessie ;
Lavanga, Mario ;
Verhelle, Birgit ;
Vervisch, Jan ;
Lemmens, Katrien ;
Kotulska, Katarzyna ;
Moavero, Romina ;
Curatolo, Paolo ;
Weschke, Bernhard ;
Riney, Kate ;
Feucht, Martha ;
Krsek, Pavel ;
Nabbout, Rima ;
Jansen, Anna C. ;
Wojdan, Konrad ;
Domanska-Pakiela, Dorota ;
Kaczorowska-Frontczak, Magdalena ;
Hertzberg, Christoph ;
Ferrier, Cyrille H. ;
Samueli, Sharon ;
Benova, Barbora ;
Aronica, Eleonora ;
Kwiatkowski, David J. ;
Jansen, Floor E. ;
Jozwiak, Sergiusz ;
Van Huffel, Sabine ;
Lagae, Lieven .
FRONTIERS IN NEUROLOGY, 2020, 11
[9]   Mining Time-Resolved Functional Brain Graphs to an EEG- Based Chronnectomic Brain Aged Index (CBAI) [J].
Dimitriadis, Stavros I. ;
Salis, Christos I. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2017, 11
[10]   An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset [J].
Gao, Junli ;
Zhang, Hongpo ;
Lu, Peng ;
Wang, Zongmin .
JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019