ON QUASI MAXIMAL IDEALS OF COMMUTATIVE RINGS

被引:0
作者
Alan, Murat [1 ]
Kilic, Mesut [1 ]
Koc, Suat [2 ]
Tekir, Unsal [3 ]
机构
[1] Yildiz Tech Univ, Dept Math, Davutpasa Campus, TR-34210 Istanbul, Turkiye
[2] Istanbul Medeniyet Univ Uskuddar, Dept Math, TR-34700 Istanbul, Turkiye
[3] Marmara Univ, Dept Math, TR-34722 Ziverbey Istanbul, Turkiye
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2023年 / 76卷 / 12期
关键词
maximal ideal; quasi-maximal ideal; prime ideal; primary ideal; 2-absorbing ideal;
D O I
10.7546/CRABS.2023.12.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let R be a commutative ring with 1 =? 0. A proper ideal I of R is said to be a quasi maximal ideal if for every a E R - I, either I + Ra = R or I + Ra is a maximal ideal of R. This class of ideals lies between 2-absorbing ideals and maximal ideals which is different from prime ideals. In addition to give fundamental properties of quasi maximal ideals, we characterize principal ideal UN-rings with V02 = (0), direct product of two fields, and Noetherian zero dimensional modules in terms of quasi maximal ideals.
引用
收藏
页码:1801 / 1810
页数:10
相关论文
共 15 条
[1]  
Ansari-Toroghy H., Keyvani S., On the maximal spectrum of a module and Zariski topology, Bull. Malaysian Math. Sci. Soc, 38, pp. 303-316, (2015)
[2]  
Badawi A., On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc, 75, 3, pp. 417-429, (2007)
[3]  
Yildiz E., Ersoy B. A., Tekir U., Koc S., On S-Zariski topology, Commun. Algebra, 49, 3, pp. 1212-1224, (2021)
[4]  
Sharp R. Y., Steps in Commutative Algebra (No. 51), (2000)
[5]  
Badawi A., Tekir U., Yetkin E., On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc, 51, 4, pp. 1163-1173, (2014)
[6]  
Tekir U., Koc S., Oral K. H., Shum K. P., On 2-absorbing quasi-primary ideals in commutative rings, Commun. Math. Stat, 4, pp. 55-62, (2016)
[7]  
Yildiz E., Tekir U., Koc S., (2, J)-Ideals in commutative rings, C. R. Acad. Bulg. Sci, 73, 9, pp. 1201-1209, (2020)
[8]  
Calugareanu G., UN-rings, J. Algebra its Appl, 15, 10, (2016)
[9]  
Anderson F. W., Fuller K. R., Rings and Categories of Modules, 13, (2012)
[10]  
Huckaba J. A., Commutative Rings with Zero Divisors, (1988)