Covalent Organic Frameworks for Energy Conversion in Photocatalysis

被引:147
|
作者
He, Ting [1 ]
Zhao, Yanli [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Singapore 637371, Singapore
关键词
CO2; Reduction; Covalent Organic Frameworks; H2O2; Evolution; Photocatalysis; Water Splitting; HYDROGEN-PEROXIDE; RATIONAL DESIGN; H-2; EVOLUTION; CO2; REDUCTION; CRYSTALLINE; WATER; CONSTRUCTION; PLATFORM; SITES; CLUSTERS;
D O I
10.1002/anie.202303086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Intensifying energy crises and severe environmental issues have led to the discovery of renewable energy sources, sustainable energy conversion, and storage technologies. Photocatalysis is a green technology that converts eco-friendly solar energy into high-energy chemicals. Covalent organic frameworks (COFs) are porous materials constructed by covalent bonds that show promising potential for converting solar energy into chemicals owing to their pre-designable structures, high crystallinity, and porosity. Herein, we highlight recent progress in the synthesis of COF-based photocatalysts and their applications in water splitting, CO2 reduction, and H2O2 production. The challenges and future opportunities for the rational design of COFs for advanced photocatalysts are discussed. This Review is expected to promote further development of COFs toward photocatalysis.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations
    Liu, Haoran
    Li, Chunzhi
    Li, He
    Ren, Yiqi
    Chen, Jian
    Tang, Jianting
    Yang, Qihua
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (18) : 20354 - 20365
  • [42] Covalent Organic Frameworks for Photocatalytic CO2 Reduction
    Liu, Yvfei
    Zhang, Mi
    Lu, Meng
    Lan, Yaqian
    PROGRESS IN CHEMISTRY, 2023, 35 (03) : 349 - 359
  • [43] Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks
    Babu, H. Vignesh
    Bai, M. G. Monika
    Rao, M. Rajeswara
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) : 11029 - 11060
  • [44] Covalent organic framework and hydrogen-bonded organic framework for solar-driven photocatalysis
    Qin, Wei-Kang
    Tung, Chen-Ho
    Wu, Li-Zhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (24) : 12521 - 12538
  • [45] Metal-organic frameworks for solar energy conversion by photoredox catalysis
    Fang, Yuanxing
    Ma, Yiwen
    Zheng, Meifang
    Yang, Pengju
    Asiri, Abdullah M.
    Wang, Xinchen
    COORDINATION CHEMISTRY REVIEWS, 2018, 373 : 83 - 115
  • [46] Structure-Property relationship in β-keto-enamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production
    Yin, Liying
    Zhao, Yingnan
    Xing, Yanmei
    Tan, Huaqiao
    Lang, Zhongling
    Ho, Wingkei
    Wang, Yonghui
    Li, Yangguang
    CHEMICAL ENGINEERING JOURNAL, 2021, 419
  • [47] Metal-Covalent Organic Frameworks (MCOFs): A Bridge Between Metal-Organic Frameworks and Covalent Organic Frameworks
    Dong, Jinqiao
    Han, Xing
    Liu, Yan
    Li, Haiyang
    Cui, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) : 13722 - 13733
  • [48] Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications
    Li, Yaqin
    Liu, Maosong
    Wu, Jinjun
    Li, Junbo
    Yu, Xianglin
    Zhang, Qichun
    FRONTIERS OF OPTOELECTRONICS, 2022, 15 (01)
  • [49] Improved Photoreduction of CO2 with Water by Tuning the Valence Band of Covalent Organic Frameworks
    Wang, Lu-jie
    Wang, Rui-lei
    Zhang, Xiao
    Mu, Jing-lin
    Zhou, Zi-yan
    Su, Zhong-min
    CHEMSUSCHEM, 2020, 13 (11) : 2973 - 2980
  • [50] Active Site Engineering in Reticular Covalent Organic Frameworks for Photocatalytic CO2 Reduction
    Rath, Bibhuti Bhusan
    Krause, Simon
    Lotsch, Bettina Valeska
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (43)