Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas

被引:13
|
作者
Kaplan, Gordana [1 ]
Gasparovic, Mateo [2 ]
Alqasemi, Abduldaem S. [3 ]
Aldhaheri, Alya [3 ]
Abuelgasim, Abdelgadir [3 ]
Ibrahim, Majed [4 ]
机构
[1] Eskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
[2] Univ Zagreb, Fac Geodesy, Chair Photogrammetry & Remote Sensing, Zagreb, Croatia
[3] Arab Emirates Univ, Coll Humanities & Social Sci, Geog & Urban Sustainabil, Al Ain, U Arab Emirates
[4] Al Al Bayt Univ, Erath & Environm Sci Inst, Geog Informat Syst & Remote Sensing Dept, Al Mafraq, Jordan
关键词
Soil salinity; Google earth engine; Sentinel-2; Remote sensing; Machine learning; Modeling; LANDSAT; 8; XINJIANG; PERFORMANCE; RESOLUTION; REGION;
D O I
10.1016/j.pce.2023.103400
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We are experiencing a considerable increase in soil salinity as a result of the influence of climate change or environmental contamination produced by excessive industry and agriculture. To be able to cope with this issue, reliable and up-to-date soil salinity measurements are required. The use of remote sensing data allows for faster and more efficient soil salinity mapping. This paper investigates several Machine Learning approaches and modeling methodologies for predicting soil salinity in hyper-arid environments using Sentinel-2 satellite imag-ery. Thus, 393 soil samples collected and used for modeling and testing in the study area, United Arab Emirates. Also, the paper benefits from open-source data and programs, such as Google Earth Engine and Weka. Different modeling strategies have been applied over the data. The results of the modeling show a strong correlation (0.84) with the test results. This study also shows interesting findings that will be examined further in future studies at other sites. As machine learning methods are evolving on a daily basis, new approaches needs to be considered in future studies for the demands of more precise modeling and mapping of soil salinity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Cropland prediction using remote sensing, ancillary data, and machine learning
    Katal, Nitish
    Hooda, Nishtha
    Sharma, Ashish
    Sharma, Bhisham
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [22] MAPPING OF SOIL SALINITY IN ABSHERON SOIL BASED ON SENTINEL-2 USING LightGBM
    Khudaverdi, Sahib Shukurov
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (12): : 1879 - 1887
  • [23] Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models
    Tola, Diego
    Satge, Frederic
    Pillco Zola, Ramiro
    Sainz, Humberto
    Condori, Bruno
    Miranda, Roberto
    Yujra, Elizabeth
    Molina-Carpio, Jorge
    Hostache, Renaud
    Espinoza-Villar, Raul
    REMOTE SENSING, 2024, 16 (18)
  • [24] SOIL NUTRIENTS PREDICTION USING REMOTE SENSING DATA IN WESTERN INDIA: AN EVALUATION OF MACHINE LEARNING MODELS
    Kaur, Gunkirat
    Das, Kamal
    Hazra, Jagabondhu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4677 - 4680
  • [25] Prediction of soil salinity parameters using machine learning models in an arid region of northwest China
    Xiao, Chao
    Ji, Qingyuan
    Chen, Junqing
    Zhang, Fucang
    Li, Yi
    Fan, Junliang
    Hou, Xianghao
    Yan, Fulai
    Wang, Han
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 204
  • [26] Fuzzy Similarity Analysis of Effective Training Samples to Improve Machine Learning Estimations of Water Quality Parameters Using Sentinel-2 Remote Sensing Data
    Dehkordi, Alireza Taheri
    Zoej, Mohammad Javad Valadan
    Mehran, Ali
    Jafari, Mohsen
    Chegoonian, Amir Masoud
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5121 - 5136
  • [27] Spatial modeling of soil chemical properties in an arid region of Central Iran using machine learning and remote sensing data
    Molaeinasab, Azita
    Tarkesh, Mostafa
    Bashari, Hossein
    Toomanian, Norair
    Aghasi, Bahareh
    Jalalian, Ahmad
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (02)
  • [28] Estimating soil salt components and salinity using hyperspectral remote sensing data in an arid area of China
    Jiang, Hongnan
    Shu, Hong
    Lei, Lei
    Xu, Jianhui
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [29] Enhancing soil moisture retrieval in semi-arid regions using machine learning algorithms and remote sensing data
    Duan, Xulong
    Maqsoom, Ahsen
    Khalil, Umer
    Aslam, Bilal
    Amjad, Talal
    Tufail, Rana Faisal
    Alarifi, Saad S.
    Tariq, Aqil
    APPLIED SOIL ECOLOGY, 2024, 204
  • [30] Vegetation Masking of Remote Sensing Data Aids Machine Learning for Soil Fertility Prediction
    Winzeler, Hans Edwin
    Mancini, Marcelo
    Blackstock, Joshua M.
    Libohova, Zamir
    Owens, Phillip R.
    Ashworth, Amanda J.
    Miller, David M.
    Silva, Sergio H. G.
    REMOTE SENSING, 2024, 16 (17)