Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas

被引:14
|
作者
Kaplan, Gordana [1 ]
Gasparovic, Mateo [2 ]
Alqasemi, Abduldaem S. [3 ]
Aldhaheri, Alya [3 ]
Abuelgasim, Abdelgadir [3 ]
Ibrahim, Majed [4 ]
机构
[1] Eskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
[2] Univ Zagreb, Fac Geodesy, Chair Photogrammetry & Remote Sensing, Zagreb, Croatia
[3] Arab Emirates Univ, Coll Humanities & Social Sci, Geog & Urban Sustainabil, Al Ain, U Arab Emirates
[4] Al Al Bayt Univ, Erath & Environm Sci Inst, Geog Informat Syst & Remote Sensing Dept, Al Mafraq, Jordan
关键词
Soil salinity; Google earth engine; Sentinel-2; Remote sensing; Machine learning; Modeling; LANDSAT; 8; XINJIANG; PERFORMANCE; RESOLUTION; REGION;
D O I
10.1016/j.pce.2023.103400
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We are experiencing a considerable increase in soil salinity as a result of the influence of climate change or environmental contamination produced by excessive industry and agriculture. To be able to cope with this issue, reliable and up-to-date soil salinity measurements are required. The use of remote sensing data allows for faster and more efficient soil salinity mapping. This paper investigates several Machine Learning approaches and modeling methodologies for predicting soil salinity in hyper-arid environments using Sentinel-2 satellite imag-ery. Thus, 393 soil samples collected and used for modeling and testing in the study area, United Arab Emirates. Also, the paper benefits from open-source data and programs, such as Google Earth Engine and Weka. Different modeling strategies have been applied over the data. The results of the modeling show a strong correlation (0.84) with the test results. This study also shows interesting findings that will be examined further in future studies at other sites. As machine learning methods are evolving on a daily basis, new approaches needs to be considered in future studies for the demands of more precise modeling and mapping of soil salinity.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] A PLSR model to predict soil salinity using Sentinel-2 MSI data
    Sahbeni, Ghada
    OPEN GEOSCIENCES, 2021, 13 (01): : 977 - 987
  • [12] Evaluating Drought Effects on Soil: Innovative Soil Salinity Monitoring via SAR Data, Sentinel-2 Imagery, and Machine Learning Algorithms in Kerkennah Archipelago
    Hihi, Sarra
    Katlane, Rim
    Kilani, Boubaker
    Zekri, Mohamed Waddah
    Bensalah, Rafik
    Siewert, Christian
    Kallel, Monem
    ATMOSPHERE, 2023, 14 (10)
  • [13] Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan
    ul Haq, Yasin
    Shahbaz, Muhammad
    Asif, H. M. Shahzad
    Al-Laith, Ali
    Alsabban, Wesam H.
    SUSTAINABILITY, 2023, 15 (17)
  • [14] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Shang Tian
    Hongwei Guo
    Wang Xu
    Xiaotong Zhu
    Bo Wang
    Qinghuai Zeng
    Youquan Mai
    Jinhui Jeanne Huang
    Environmental Science and Pollution Research, 2023, 30 : 18617 - 18630
  • [15] Quantifying Seagrass Density Using Sentinel-2 Data and Machine Learning
    Meister, Martin
    Qu, John J.
    REMOTE SENSING, 2024, 16 (07)
  • [16] MAPPING OF SOIL SALINITY IN ABSHERON SOIL BASED ON SENTINEL-2 USING LightGBM
    Khudaverdi, Sahib Shukurov
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (12): : 1879 - 1887
  • [17] Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models
    Tola, Diego
    Satge, Frederic
    Pillco Zola, Ramiro
    Sainz, Humberto
    Condori, Bruno
    Miranda, Roberto
    Yujra, Elizabeth
    Molina-Carpio, Jorge
    Hostache, Renaud
    Espinoza-Villar, Raul
    REMOTE SENSING, 2024, 16 (18)
  • [18] Salinity Properties Retrieval from Sentinel-2 Satellite Data and Machine Learning Algorithms
    Mzid, Nada
    Boussadia, Olfa
    Albrizio, Rossella
    Stellacci, Anna Maria
    Braham, Mohamed
    Todorovic, Mladen
    AGRONOMY-BASEL, 2023, 13 (03):
  • [19] Detection and modeling of soil salinity variations in arid lands using remote sensing data
    Alqasemi, Abduldaem S.
    Ibrahim, Majed
    Al-Quraishi, Ayad M. Fadhil
    Saibi, Hakim
    Al-Fugara, A'kif
    Kaplan, Gordana
    OPEN GEOSCIENCES, 2021, 13 (01) : 443 - 453
  • [20] Evaluating the Atmospheric Correction Impact on Landsat 8 and Sentinel-2 Data for Soil Salinity Determination
    Avdan, Ugur
    Matci, Dilek Kucuk
    Kaplan, Gordana
    Avdan, Zehra Yigit
    Erdem, Firat
    Demirtas, Ilknur
    Mizik, Ece Tugba
    GEODETSKI LIST, 2021, 75 (03) : 225 - 240