Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas

被引:13
|
作者
Kaplan, Gordana [1 ]
Gasparovic, Mateo [2 ]
Alqasemi, Abduldaem S. [3 ]
Aldhaheri, Alya [3 ]
Abuelgasim, Abdelgadir [3 ]
Ibrahim, Majed [4 ]
机构
[1] Eskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkiye
[2] Univ Zagreb, Fac Geodesy, Chair Photogrammetry & Remote Sensing, Zagreb, Croatia
[3] Arab Emirates Univ, Coll Humanities & Social Sci, Geog & Urban Sustainabil, Al Ain, U Arab Emirates
[4] Al Al Bayt Univ, Erath & Environm Sci Inst, Geog Informat Syst & Remote Sensing Dept, Al Mafraq, Jordan
关键词
Soil salinity; Google earth engine; Sentinel-2; Remote sensing; Machine learning; Modeling; LANDSAT; 8; XINJIANG; PERFORMANCE; RESOLUTION; REGION;
D O I
10.1016/j.pce.2023.103400
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We are experiencing a considerable increase in soil salinity as a result of the influence of climate change or environmental contamination produced by excessive industry and agriculture. To be able to cope with this issue, reliable and up-to-date soil salinity measurements are required. The use of remote sensing data allows for faster and more efficient soil salinity mapping. This paper investigates several Machine Learning approaches and modeling methodologies for predicting soil salinity in hyper-arid environments using Sentinel-2 satellite imag-ery. Thus, 393 soil samples collected and used for modeling and testing in the study area, United Arab Emirates. Also, the paper benefits from open-source data and programs, such as Google Earth Engine and Weka. Different modeling strategies have been applied over the data. The results of the modeling show a strong correlation (0.84) with the test results. This study also shows interesting findings that will be examined further in future studies at other sites. As machine learning methods are evolving on a daily basis, new approaches needs to be considered in future studies for the demands of more precise modeling and mapping of soil salinity.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] A PLSR model to predict soil salinity using Sentinel-2 MSI data
    Sahbeni, Ghada
    OPEN GEOSCIENCES, 2021, 13 (01): : 977 - 987
  • [12] Salinity Properties Retrieval from Sentinel-2 Satellite Data and Machine Learning Algorithms
    Mzid, Nada
    Boussadia, Olfa
    Albrizio, Rossella
    Stellacci, Anna Maria
    Braham, Mohamed
    Todorovic, Mladen
    AGRONOMY-BASEL, 2023, 13 (03):
  • [13] Detection and modeling of soil salinity variations in arid lands using remote sensing data
    Alqasemi, Abduldaem S.
    Ibrahim, Majed
    Al-Quraishi, Ayad M. Fadhil
    Saibi, Hakim
    Al-Fugara, A'kif
    Kaplan, Gordana
    OPEN GEOSCIENCES, 2021, 13 (01) : 443 - 453
  • [14] Towards the Improvement of Soil Salinity Mapping in a Data-Scarce Context Using Sentinel-2 Images in Machine-Learning Models
    Sirpa-Poma, J. W.
    Satge, F.
    Resongles, E.
    Pillco-Zola, R.
    Molina-Carpio, J.
    Colque, M. G. Flores
    Ormachea, M.
    Pacheco Mollinedo, P.
    Bonnet, M. -p.
    SENSORS, 2023, 23 (23)
  • [15] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Tian, Shang
    Guo, Hongwei
    Xu, Wang
    Zhu, Xiaotong
    Wang, Bo
    Zeng, Qinghuai
    Mai, Youquan
    Huang, Jinhui Jeanne
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (07) : 18617 - 18630
  • [16] Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms
    Shang Tian
    Hongwei Guo
    Wang Xu
    Xiaotong Zhu
    Bo Wang
    Qinghuai Zeng
    Youquan Mai
    Jinhui Jeanne Huang
    Environmental Science and Pollution Research, 2023, 30 : 18617 - 18630
  • [17] Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data
    Pejak, Branislav
    Lugonja, Predrag
    Antic, Aleksandar
    Panic, Marko
    Pandzic, Milos
    Alexakis, Emmanouil
    Mavrepis, Philip
    Zhou, Naweiluo
    Marko, Oskar
    Crnojevic, Vladimir
    REMOTE SENSING, 2022, 14 (09)
  • [18] Quantifying Seagrass Density Using Sentinel-2 Data and Machine Learning
    Meister, Martin
    Qu, John J.
    REMOTE SENSING, 2024, 16 (07)
  • [19] Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images
    He, Xianglin
    Yang, Lin
    Li, Anqi
    Zhang, Lei
    Shen, Feixue
    Cai, Yanyan
    Zhou, Chenhu
    CATENA, 2021, 205
  • [20] Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
    Aguirre-Gutierrez, Jesus
    Rifal, Sami
    Shenkin, Alexander
    Oliveras, Imma
    Bentley, Lisa Patrick
    Svatek, Martin
    Girardin, Cecile A. J.
    Both, Sabine
    Riutta, Terhi
    Berenguer, Erika
    Kissling, W. Daniel
    Bauman, David
    Raab, Nicolas
    Moore, Sam
    Farfan-Rios, William
    Simoes Figueiredo, Axa Emanuelle
    Reis, Simone Matias
    Ndong, Josue Edzang
    Ondo, Fidele Evouna
    Bengone, Natacha N'ssi
    Mihindou, Vianet
    Moraes de Seixas, Marina Maria
    Adu-Bredu, Stephen
    Abemethy, Katharine
    Asner, Gregory P.
    Barlow, Jos
    Burstem, David F. R. P.
    Coomes, David A.
    Cernusak, Lucas A.
    Dargle, Greta C.
    Enquist, Brian J.
    Ewers, Robert M.
    Ferreira, Joice
    Jeffery, Kathryn J.
    Joly, Carlos A.
    Lewis, Simon L.
    Marimon-Junior, Ben Hur
    Martin, Roberta E.
    Morandi, Paulo S.
    Phillips, Oliver L.
    Quesada, Carlos A.
    Salinas, Norma
    Marimon, Beatriz Schwantes
    Silman, Miles
    Teh, Yit Arn
    White, Lee J. T.
    Malhi, Yadvinder
    REMOTE SENSING OF ENVIRONMENT, 2021, 252