Real-Time Damaged Building Region Detection Based on Improved YOLOv5s and Embedded System From UAV Images

被引:15
|
作者
Wang, Yunlong [1 ]
Feng, Wenqing [2 ]
Jiang, Kun [1 ]
Li, Qianchun [1 ]
Lv, Ruipeng [3 ]
Tu, Jihui [1 ]
机构
[1] Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Comp & Software, Hangzhou 310018, Peoples R China
[3] Wuhan NavInfo Technol Co, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Buildings; Feature extraction; Object detection; Detectors; Remote sensing; Real-time systems; Proposals; Attention mechanism; building damage region detection; object detection; YOLOv5; EARTHQUAKE;
D O I
10.1109/JSTARS.2023.3268312
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting the damaged building regions is vital to humanitarian assistance and disaster recovery after a disaster. Deep-learning techniques based on aerial and unmanned aerial vehicle (UAV) images have been extensively applied to the literature to detect damaged building regions, which are approved to be effective methods for fast response actions and rescue work. However, most of the existing building damaged region detection methods only consider the extraction accuracy of damaged regions from aerial or UAV images, which are not real time and can hardly meet the practical application of emergency response. To address this problem, a new real-time building damaged region detection based on improved YOLOv5 and adapted to an embedded system from UAV images is proposed, which is named DB-YOLOv5. First, residual dilated convolution module is employed to extract the spatial features, which can increase the receptive field. Then, a feature fusion module (BDSCAM) is designed to enhance the expressive ability of object feature, which could improve the classification performance of detector. Finally, a double-head method, an integration system of fully connected and convolution head for bounding box regression and classification, executes the localization task. The proposed DB-YOLOv5 method was evaluated using postdisaster UAV images collected over Ludian, China, in 2013 and Beichuan, China, in 2008. We found that the experimental results demonstrate that the proposed method is high accuracy and efficient for building damaged region detection and assessment on the embedded system. This approach is robust and suitable for practical application in disaster scenarios.
引用
收藏
页码:4205 / 4217
页数:13
相关论文
共 50 条
  • [1] Real-Time Object Detection from UAV Inspection Videos by Combining YOLOv5s and DeepStream
    Xie, Shidun
    Deng, Guanghong
    Lin, Baihao
    Jing, Wenlong
    Li, Yong
    Zhao, Xiaodan
    SENSORS, 2024, 24 (12)
  • [2] Real-Time Detection of Abnormal Behavior of Escalator Passengers Based on YOLOv5s
    Wang Yuanpeng
    Wan Haibin
    Huang Kai
    Chi Zhaozhan
    Zhang Jinqi
    Huang Zhixing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [3] Lung Nodule Detection in Medical Images Based on Improved YOLOv5s
    Ji, Zhanlin
    Wu, Yun
    Zeng, Xinyi
    An, Yongli
    Zhao, Li
    Wang, Zhiwu
    Ganchev, Ivan
    IEEE ACCESS, 2023, 11 : 76371 - 76387
  • [4] Lightweight Detection Method for Real-Time Monitoring Tomato Growth Based on Improved YOLOv5s
    Tian, Suyu
    Fang, Chao
    Zheng, Xiaogang
    Liu, Jue
    IEEE ACCESS, 2024, 12 : 29891 - 29899
  • [5] Real-Time Recognition and Localization of Kiwifruit Based on Improved YOLOv5s Algorithm
    Dai, Jin-Sui
    He, Zhi-Qin
    IEEE ACCESS, 2024, 12 : 156261 - 156272
  • [6] YOLOv5-R: lightweight real-time detection based on improved YOLOv5
    Ren, Jian
    Wang, Zhijie
    Zhang, Yifan
    Liao, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [7] UAV small target detection algorithm based on improved YOLOv5s
    Song, Yaolian
    Wang, Can
    Li, Dayan
    Liu, Xinyi
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (12): : 2417 - 2426
  • [8] Elderly Fall Detection Based on Improved YOLOv5s Network
    Chen, Tingting
    Ding, Zhenglong
    Li, Biao
    IEEE ACCESS, 2022, 10 : 91273 - 91282
  • [9] Road object detection algorithm based on improved YOLOv5s
    Zhou Qing
    Tan Gong-quan
    Yin Song-lin
    Li Yi-nian
    Wei Dan-qin
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (05) : 680 - 690
  • [10] Ship Classification and Detection Method for Optical Remote Sensing Images Based on Improved YOLOv5s
    Zhou Qikai
    Zhang Wei
    Li Dongjin
    Niu Fu
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)