Electron Transport Properties in High Electron Mobility Transistor Structures Improved by V-Pit Formation on the AlGaN/GaN Interface

被引:11
作者
Hospodkova, Alice [1 ]
Hajek, Frantisek [1 ,2 ]
Hubacek, Tomas [1 ]
Gedeonova, Zuzana [1 ]
Hubik, Pavel [1 ]
Hyvl, Matej [1 ]
Pangrac, Jiri [1 ]
Dominec, Filip [1 ]
Kosutova, Tereza [1 ,3 ]
机构
[1] CAS, Inst Phys, Prague 6, Czech Republic
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague 1, Czech Republic
[3] Charles Univ Prague, Fac Math & Phys, Prague 12116, Czech Republic
关键词
HEMT; GaN; AlGaN; metal-organic vapor phase epitaxy; dislocations; electron mobility; DISLOCATION SCATTERING; GAN; TRAPS; HEMTS; RF;
D O I
10.1021/acsami.3c00799
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work suggests new morphology for the AlGaN/GaN interface which enhances electron mobility in two-dimensional electron gas (2DEG) of high-electron mobi l i t y transistor (HEMT) structures. The widely used technology for the preparation of GaN channels in AlGaN/GaN HEMT transistors is gro w t h at a high temperature of around 1000 degrees C in an H2 atmosphere. The main reason for these conditions is the aim to prepare an atomically flat epitaxial surface for the AlGaN/GaN interface and to achieve a layer with the lowest possible carbon concentration. In this work, we show that a smooth AlGaN/GaN interface is not necessary for high electron mobility in 2DEG. Surprisingly, when the high-temperature GaN channel layer is replaced by the layer grown at a temperature of 870 degrees C in an N2 atmosphere using TEGa as a precursor, the electron Hall mobi l i t y increases significantly. This unexpected behavior can be explained by a spatial separation of electrons by V-pits from the regions surrounding dislocation which contain increased concentration of point defects and impurities.
引用
收藏
页码:19646 / 19652
页数:7
相关论文
共 26 条
[1]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[2]   Application Relevant Evaluation of Trapping Effects in AlGaN/GaN HEMTs With Fe-Doped Buffer [J].
Axelsson, Olle ;
Gustafsson, Sebastian ;
Hjelmgren, Hans ;
Rorsman, Niklas ;
Blanck, Herve ;
Splettstoesser, Jorg ;
Thorpe, Jim ;
Roedle, Thomas ;
Thorsell, Mattias .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (01) :326-332
[3]   nextnano: General purpose 3-D simulations [J].
Birner, Stefan ;
Zibold, Tobias ;
Andlauer, Till ;
Kubis, Tillmann ;
Sabathil, Matthias ;
Trellakis, Alex ;
Vogl, Peter .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2137-2142
[4]   The structure and properties of dislocations in GaN [J].
Cherns, D. ;
Hawkridge, M. E. .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (09) :2685-2690
[5]   Microstructure of heteroepitaxial GaN revealed by x-ray diffraction [J].
Chierchia, R ;
Böttcher, T ;
Heinke, H ;
Einfeldt, S ;
Figge, S ;
Hommel, D .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (11) :8918-8925
[6]   Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition [J].
Cruz, Samantha C. ;
Keller, Stacia ;
Mates, Thomas E. ;
Mishra, Umesh K. ;
DenBaars, Steven P. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (15) :3817-3823
[7]   A survey of Gallium Nitride HEMT for RF and high power applications [J].
Fletcher, A. S. Augustine ;
Nirmal, D. .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 :519-537
[8]   Transport properties of AlGaN/GaN HEMT structures with back barrier: impact of dislocation density and improved design [J].
Hajek, Frantisek ;
Hospodkova, Alice ;
Hubik, Pavel ;
Gedeonova, Zuzana ;
Hubacek, Tomas ;
Pangrac, Jiri ;
Kuldova, Karla .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (07)
[9]   Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J].
Hangleiter, A ;
Hitzel, F ;
Netzel, C ;
Fuhrmann, D ;
Rossow, U ;
Ade, G ;
Hinze, P .
PHYSICAL REVIEW LETTERS, 2005, 95 (12)
[10]   Recent Advances in GaN-Based Power HEMT Devices [J].
He, Jiaqi ;
Cheng, Wei-Chih ;
Wang, Qing ;
Cheng, Kai ;
Yu, Hongyu ;
Chai, Yang .
ADVANCED ELECTRONIC MATERIALS, 2021, 7 (04)