MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology

被引:6
作者
Sarkis, Rita [1 ,2 ,3 ,4 ]
Burri, Olivier [5 ]
Royer-Chardon, Claire [6 ,7 ]
Schyrr, Frederica [1 ,2 ]
Blum, Sophie [1 ,2 ]
Costanza, Mariangela [8 ,9 ,10 ]
Cherix, Stephane [11 ,12 ]
Piazzon, Nathalie [6 ,7 ]
Barcena, Carmen [6 ,7 ,13 ]
Bisig, Bettina [6 ,7 ]
Nardi, Valentina [14 ]
Sarro, Rossella [6 ,7 ,15 ]
Ambrosini, Giovanna [16 ]
Weigert, Martin [17 ]
Spertini, Olivier [8 ,9 ,10 ]
Blum, Sabine [8 ,9 ,10 ]
Deplancke, Bart [4 ,18 ]
Seitz, Arne [5 ]
de Leval, Laurence [6 ,7 ]
Naveiras, Olaia [1 ,2 ,8 ,9 ,10 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Bioengn, Lab Regenerat Hematopoiesis, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, ISREC, Lausanne, Switzerland
[3] Univ Lausanne UNIL, Dept Biomed Sci, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne EPFL, Sch Life Sci, Inst Bioengn, Lab Syst Biol & Genet, Lausanne, Switzerland
[5] Ecole Polytech Fed Lausanne, Sch Life Sci, BioImaging & Opt Core Facil, Lausanne, Switzerland
[6] Lausanne Univ Hosp, Inst Pathol, Dept Lab Med & Pathol, Lausanne, Switzerland
[7] Lausanne Univ, Lausanne, Switzerland
[8] Lausanne Univ Hosp CHUV, Dept Oncol, Hematol Serv, Lausanne, Switzerland
[9] Lausanne Univ Hosp CHUV, Dept Lab Med, Hematol Serv, Lausanne, Switzerland
[10] Univ Lausanne UNIL, Lausanne, Switzerland
[11] Lausanne Univ Hosp, Dept Orthopaed & Traumatol, Lausanne, Switzerland
[12] Univ Lausanne, Lausanne, Switzerland
[13] Hosp 12 Octubre, Dept Pathol, Madrid, Spain
[14] Massachusetts Gen Hosp, Dept Pathol, Boston, MA USA
[15] Ente Osped Cantonale EOC, Inst Pathol, Locarno, Switzerland
[16] UNIL EPFL Lausanne, Bioinformat Competence Ctr BICC, Lausanne, Switzerland
[17] Ecole Polytech Fed Lausanne EPFL, Sch Life Sci, Inst Bioengn, Lausanne, Switzerland
[18] Swiss Inst Bioinformat, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
adiposity; bone marrow; cellularity; digital pathology; hematopathology; open-source; stroma; ACUTE MYELOID-LEUKEMIA; APLASTIC-ANEMIA; CELLULARITY; BIOPSY; IMAGE; DIAGNOSIS; ASPIRATE; AGE; HISTOPATHOLOGY; CLASSIFICATION;
D O I
10.1016/j.modpat.2022.100088
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 67 条
  • [51] Bone Marrow Aspirate and Biopsy: A Pathologist's Perspective. II. Interpretation of the Bone Marrow Aspirate and Biopsy
    Riley, Roger S.
    Williams, David
    Ross, Micaela
    Zhao, Shawn
    Chesney, Alden
    Clark, Bradly D.
    Ben-Ezra, Jonathan M.
    [J]. JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2009, 23 (05) : 259 - 307
  • [52] Rozman M, 1997, HAEMATOLOGICA, V82, P166
  • [53] Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues
    Scheller, Erica L.
    Doucette, Casey R.
    Learman, Brian S.
    Cawthorn, William P.
    Khandaker, Shaima
    Schell, Benjamin
    Wu, Brent
    Ding, Shi-Ying
    Bredella, Miriam A.
    Fazeli, Pouneh K.
    Khoury, Basma
    Jepsen, Karl J.
    Pilch, Paul F.
    Klibanski, Anne
    Rosen, Clifford J.
    MacDougald, Ormond A.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [54] Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes
    Schemenau, Jennifer
    Baldus, Stephan
    Anlauf, Martin
    Reinecke, Petra
    Braunstein, Stefan
    Blum, Sabine
    Nachtkamp, Kathrin
    Neukirchen, Judith
    Strup, Corinna
    Aul, Carlo
    Haas, Rainer
    Gattermann, Norbert
    Germing, Ulrich
    [J]. EUROPEAN JOURNAL OF HAEMATOLOGY, 2015, 95 (03) : 181 - 189
  • [55] Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/nmeth.2019, 10.1038/NMETH.2019]
  • [56] Cell Detection with Star-Convex Polygons
    Schmidt, Uwe
    Weigert, Martin
    Broaddus, Coleman
    Myers, Gene
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 265 - 273
  • [57] NIH Image to ImageJ: 25 years of image analysis
    Schneider, Caroline A.
    Rasband, Wayne S.
    Eliceiri, Kevin W.
    [J]. NATURE METHODS, 2012, 9 (07) : 671 - 675
  • [58] Artificial intelligence-based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients
    Sirinukunwattana, Korsuk
    Aberdeen, Alan
    Theissen, Helen
    Sousos, Nikolaos
    Psaila, Bethan
    Mead, Adam J.
    Turner, Gareth D. H.
    Rees, Gabrielle
    Rittscher, Jens
    Royston, Daniel
    [J]. BLOOD ADVANCES, 2020, 4 (14) : 3284 - 3294
  • [59] Closing the translation gap: AI applications in digital pathology
    Steiner, David F.
    Chen, Po-Hsuan Cameron
    Mermel, Craig H.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2021, 1875 (01):
  • [60] Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis
    Suchacki, Karla J.
    Tavares, Adriana A. S.
    Mattiucci, Domenico
    Scheller, Erica L.
    Papanastasiou, Giorgos
    Gray, Calum
    Sinton, Matthew C.
    Ramage, Lynne E.
    McDougald, Wendy A.
    Lovdel, Andrea
    Sulston, Richard J.
    Thomas, Benjamin J.
    Nicholson, Bonnie M.
    Drake, Amanda J.
    Alcaide-Corral, Carlos J.
    Said, Diana
    Poloni, Antonella
    Cinti, Saverio
    Macpherson, Gavin J.
    Dweck, Marc R.
    Andrews, Jack P. M.
    Williams, Michelle C.
    Wallace, Robert J.
    van Beek, Edwin J. R.
    MacDougald, Ormond A.
    Morton, Nicholas M.
    Stimson, Roland H.
    Cawthorn, William P.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)