Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation

被引:33
|
作者
Pan, Lixia [1 ]
Ye, Hangyu [1 ]
Pi, Xionge [2 ]
Liu, Wei [2 ]
Wang, Zhao [1 ]
Zhang, Yinjun [1 ]
Zheng, Jianyong [1 ]
机构
[1] Zhejiang Univ Technol, Coll Biotechnol & Bioengn, Hangzhou, Peoples R China
[2] Zhejiang Acad Agr Sci, Inst Plant Protect & Microbiol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
flavonoids; gut microbiota; gas; short-chain fatty acids; in vitro simulated fermentation; OLIGOGLUCOSYL QUERCETIN 3-O-GLUCOSIDE; ENZYMATICALLY MODIFIED ISOQUERCITRIN; RESVERATROL; POLYPHENOLS; MICROFLORA; CONVERSION; IMPACT; ACID;
D O I
10.3389/fmicb.2023.1092729
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
IntroductionFlavonoids have antiviral, antitumor, anti-inflammatory, and other biological activities. They have high market value and are widely used in food and medicine fields. They also can regulate gut microbiota and promote human health. However, only a few flavonoids have been reported for their regulatory effects on human gut microbiota. MethodsThe effects of hesperidin, hesperetin-7-O-glucoside, hesperetin, naringin, prunin, naringenin, rutin, isoquercitrin, and quercetin on gut microbiota structural and metabolic differences in healthy subjects were studied by means of in vitro simulated fermentation technology. ResultsResults showed that the nine kinds of flavonoids mentioned above, especially hesperetin-7-O-glucoside, prunin, and isoquercitrin, were found to have more effect on the structure of human gut microbiota, and they could significantly enhance Bifidobacterium (p < 0.05). After 24 h of in vitro simulated fermentation, the relative abundance of intestinal probiotics (e.g., Lactobacillus) was increased by the three flavonoids and rutin. Furthermore, the relative abundance of potential pathogenic bacteria was decreased by the addition of hesperetin-7-O-glucoside, naringin, prunin, rutin, and isoquercitrin (e.g., Lachnoclostridium and Bilophila). Notably, prunin could also markedly decrease the content of H2S, NH3, and short-chain fatty acids. This performance fully demonstrated its broad-spectrum antibacterial activity. DiscussionThis study demonstrates that flavonoids can regulate the imbalance of gut microbiota, and some differences in the regulatory effect are observed due to different structures. This work provides a theoretical basis for the wide application of flavonoids for food and medicine.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota
    Pham, Tung
    Savary, Brett J.
    Teoh, Keat
    Chen, Ming-Hsuan
    McClung, Anna
    Lee, Sun-Ok
    NUTRIENTS, 2017, 9 (11):
  • [22] Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota
    Meng, Xia
    Xia, Chenlan
    Wu, Hongchen
    Gu, Qing
    Li, Ping
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (15) : 9255 - 9264
  • [23] Simulated digestion and fecal fermentation behaviors of exopolysaccharides from Paecilomyces cicadae TJJ1213 and its effects on human gut microbiota
    Tian, Juanjuan
    Wang, Xiaomeng
    Zhang, Xueliang
    Chen, Xiaohong
    Rui, Xin
    Zhang, Qiuqin
    Dong, Mingsheng
    Li, Wei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 188 : 833 - 843
  • [24] In Vitro Digestion and Fecal Fermentation of Low-Gluten Rice and Its Effect on the Gut Microbiota
    Li, Zhi-Tao
    Han, Shuang-Xin
    Pu, Jia-Yang
    Wang, Yu-Ying
    Jiang, Yun
    Gao, Min-Jie
    Zhan, Xiao-Bei
    Xu, Song
    FOODS, 2023, 12 (04)
  • [25] Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer
    AL-Ishaq, Raghad Khalid
    Liskova, Alena
    Kubatka, Peter
    Busselberg, Dietrich
    CANCERS, 2021, 13 (16)
  • [26] The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis
    Wang, Haoran
    Zhao, Tingting
    Liu, Zhenjiang
    Danzengquzhen
    Cisangzhuoma
    Ma, Jinying
    Li, Xin
    Huang, Xiaodan
    Li, Bin
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [27] In vitro fermentation characteristics of polysaccharides from coix seed and its effects on the gut microbiota
    Ge, Qing
    Hou, Chen-long
    Rao, Xiu-hua
    Zhang, An-qiang
    Xiao, Guo-ming
    Wang, Lu-yao
    Jin, Kai-ning
    Sun, Pei-long
    Chen, Li-Chun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 262
  • [28] In vitro fermentation of kodo and kutki millets by human gut microbiota: Gut microbiota and metabolomic analysis
    Sori, Nidhi
    Poyil, Nafee Chundanga
    Khan, Mahejibin
    FOOD BIOSCIENCE, 2023, 56
  • [29] In vivo absorption, in vitro simulated digestion and fecal fermentation properties of polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and their effects on human gut microbiota
    Gao, Kui-Xu
    Peng, Xi
    Wang, Jing-Ya
    Wang, Yao
    Pei, Ke
    Meng, Xiang-Long
    Zhang, Shuo-Sheng
    Hu, Mei-Bian
    Liu, Yu-Jie
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 266
  • [30] In vitro digestion and human gut microbiota fermentation of Bletilla striata polysaccharides and oligosaccharides
    Wang, Qiqi
    Chen, Huimin
    Yin, Mingzhu
    Cheng, Xue
    Xia, Hui
    Hu, Haiming
    Zheng, Junping
    Zhang, Zhigang
    Liu, Hongtao
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13